
Federated Scheduling Admits No Constant Speedup
Factors for Constrained-Deadline DAG Task Systems?

Jian-Jia Chen

Department of Informatics, TU Dortmund University, Germany

Abstract. In the federated scheduling approaches in multiprocessor systems, a
task either 1) is restricted to execute sequentially on a single processor or 2)
has exclusive access to the assigned processors. There have been several posi-
tive results to conduct good federated scheduling policies, which have constant
speedup factors with respect to any optimal federated scheduling algorithm. This
paper answers an open question: “For constrained-deadline task systems with
directed acyclic graph (DAG) dependency structures, do federated scheduling
policies have a constant speedup factor with respect to any optimal scheduling
algorithm?” The answer is “No!” This paper presents an example, which demon-
strates that any federated scheduling algorithm has a speedup factor of at least
Ω(min{M,N}) with respect to any optimal scheduling algorithm, where N is
the number of tasks and M is the number of processors.

1 Introduction

The sporadic task model has been widely adopted in real-time systems. In the sporadic
task model, a task τi is characterized by its relative deadline Di, its minimum inter-
arrival time Ti. A sporadic task is an infinite sequence of task instances, referred to as
jobs, where two consecutive jobs of a task should arrive no shorter than the minimum
inter-arrival time separation. A sporadic task system τ is called an implicit-deadline
system if Di = Ti holds for each τi. A sporadic task system τ is called a constrained-
deadline system if Di ≤ Ti holds for each τi. Otherwise, such a sporadic task system τ
is an arbitrary-deadline system.

Traditionally, each task τi is also associated with its worst-case execution time
(WCET) Ci. In uniprocessor platforms, in the literature, since the processor only exe-
cutes one job at one time point, there is no need to express potential parallel execution
paths. Multiprocessor platforms allow inter-task parallelism, which enables the capa-
bility to execute sequential programs concurrently, and intra-task parallelism, which
allows a parallelized task to be executed in parallel at the same time. The parallelism
of a job of a task can be represented by a directed acyclic graph (DAG). That is, the
DAG structure defines the precedence constraints of the subtasks. In other words, the
execution of task τi can be divided into subtasks and the precedence constraints of these
subtasks are defined by a DAG structure.

To handle a set of DAG tasks on multiprocessor platforms, the recent studies by Li et
al. [6] and Baruah [1,2,3] suggest to use federated scheduling. In the federated schedul-
ing in multiprocessor systems, a task 1) either is restricted to execute sequentially on
? This paper has been supported by DFG, as part of the Collaborative Research Center SFB876

(http://sfb876.tu-dortmund.de/).

ar
X

iv
:1

51
0.

07
25

4v
2

 [
cs

.D
S]

 2
2

Ju
n

20
16

http://sfb876.tu-dortmund.de/

a single processor or 2) has exclusive access to the assigned processors. The federated
scheduling strategy was originally proposed in [6] for implicit-deadline task systems.
Baruah [1,2,3] adopted the concept of federated scheduling for constrained-deadline
and arbitrary-deadline task systems.

A scheduling algorithm generates a schedule for the task system τ to define when
and how the jobs are executed on the platform. A schedule is feasible if no job misses its
deadline and all the scheduling constraints are respected (i.e., precedence constraints,
minimum inter-arrival time between two consecutive jobs of a task, etc.). An optimal
scheduling algorithm is defined as follows: If there exist a feasible schedule, an optimal
scheduling algorithm produces one of them. Similarly, an optimal federated scheduling
algorithm is defined as follows: If there exist feasible federated schedules, an optimal
federated scheduling algorithm produces one of them.

The federated scheduling strategies are not optimal scheduling strategies. That is,
there exist task sets which can be feasibly scheduled to meet their deadlines, but the
federated scheduling strategies lead to deadline misses while scheduling those task sets.
One widely-adopted theoretical measure to quantify the approximation made in such
non-optimal scheduling strategies is the speedup factors, defined as follows:

Definition 1. A scheduling algorithmA is said to have a speedup factor s with respect
to a scheduling algorithm B if the following condition always holds:

– For any task system τ that can be feasibly scheduled by the scheduling algorithm
B, the schedule derived from the scheduling algorithmA is feasible by speeding up
(each of the processors) to s times as fast as in the original platform (speed).

The quantitive measure of speedup factors is always related to the reference schedul-
ing algorithm B. The speedup factor with respect to any optimal scheduling algorithm
provides an absolute measure to evaluate the theoretical gap of the scheduling algorithm
A. However, if B is only a sub-optimal scheduling algorithm, the speedup factor with
respect to B provides only a relative measure. Therefore, if the reference algorithm B
is very far from any optimal scheduling algorithm, the quantitive speedup factors with
respect to B may be misleading.

The existing results of speedup factors for federated scheduling on M identical
processors can be summarized as follows:

– The speedup factor of the federated scheduling algorithm in [6] for implicit-deadline
task systems in identical multiprocessor platforms is 2 with respect to any optimal
scheduling algorithm.1

– The speedup factor of the federated scheduling algorithms in [1,3] for constrained-
deadline task systems in identical multiprocessor platforms is 3−1/M with respect
to any optimal federated scheduling algorithm.

– The speedup factor of the federated scheduling algorithms in [2,3] for arbitrary-
deadline task systems in identical multiprocessor platforms is 4−2/M with respect
to any optimal federated scheduling algorithm.

1 The paper [6] uses another quantification metric, called capacity augmentation factor. It is
also shown that a capacity augmentation factor 2 also implies a speedup factor 2 for implicit-
deadline task systems.

2

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ9 τ10
Ci 10 10 20 40 80 160 320 640 1280
Di 1 2 4 8 16 32 64 128 256
Ti ∞

Table 1: An example of the task set τ when N = 10, M = 10, and K = 2.

Therefore, there is a potential gap between the relative speedup factors used in
[1,2,3] (with respect to any optimal federated scheduling algorithm) and the absolute
speedup factors with respect to any optimal scheduling algorithm. The results in [1,2,3]
can only be concluded to have a constant speedup factor with respect to any optimal
scheduling algorithm if the federated schedules have a constant speedup factor with re-
spect to any optimal scheduling algorithm. It could be possible that federated schedul-
ing itself is not a good scheduling strategy (with respect to any optimal scheduling
algorithm). If so, the constant federated speedup factors in [1,2,3] can be misleading
and do not result in constant speedup factors with respect to any optimal scheduling
algorithm.

For constrained-deadline task systems with DAG, the contribution of this paper in
Section 2 shows that “the speedup factor of any federated scheduling algorithm with
respect to any optimal scheduling algorithm is at least Ω(min{M,N}), where N is the
number of tasks and M is the number of processors.” This concludes that the speedup
factors (with respect to any optimal scheduling algorithm) of the algorithms in [1,2,3]
are at least Ω(min{M,N}). However, please note that the result in this paper does not
invalidate the constant speedup factors with respect to any optimal federated scheduling,
as claimed in [1,2,3].

2 Speedup Factor Lower Bound of Federated Scheduling

To prove the lower bound of the speedup factors of any federated scheduling algorithm
with respect to any optimal scheduling algorithm, we just have to show that there exist
input task sets that admit feasible schedules but cannot be feasibly scheduled by any
federated scheduling strategies under a constant speedup factor. Specifically, in the pro-
vided input task set, it is not necessary to exploit any specific DAG constraints. The
lower bound is built based on the observation of the pessimistic strategy in federated
scheduling to grant a task exclusive access to the processors upon which they execute if
the task needs more than one processor.

Suppose that M ≥ 2 is a positive integer. Moreover, let K be any arbitrary number
with K ≥ 2. We create N sporadic tasks with the following setting:

– C1 =M , D1 = 1, and T1 =∞.
– Ci = Ki−2(K − 1)M , Di = Ki−1, and Ti =∞ for i = 2, 3, . . . , N .

Table 1 provides a concrete example when N is 10, M is 10 and K is 2.
We assume that each task τi has M subtasks and there is no precedence constraint

among theseM subtasks (a special case of DAG). Each subtask of task τi has the worst-
case execution time Ci

M . For the rest of this section, we denote this task set as τcounter.

3

We will first show in Lemma 1 that task set τcounter admits feasible schedules.

Lemma 1. There exists a feasible schedule of the given task set τcounter.

Proof. Since each task τi has M (independent) subtasks with the same execution time,
we can greedily assign each of them to one processor statically and apply the earliest-
deadline-first (EDF) scheduling algorithm individually on each of the M processors.
Therefore, the feasibility of the schedule can be easily verified by validating whether
the subtasks on one processor can meet the deadline or not. This can be verified by using

the demand bound function analysis provided by Baruah et al. [4]. Since
∑j

i=1 Ci

M = Dj

for j = 1, 2, . . . , N , the above schedule is a feasible one.

The following lemma shows that task set τcounter cannot be feasibly scheduled by
any federated scheduling algorithm if the speedup factor s is not big enough.

Lemma 2. Suppose that the M processors are speeded up to s times of the original
speed, where s is strictly smaller than (1 − 1

K)M , i.e., s < (1 − 1
K)M . A feder-

ated schedule for task set τcounter requires at least M
s

(
N − N−1

K

)
processors with

speed s to feasibly schedule the given task set τcounter. That is, if s < (1 − 1
K)M and

M
s

(
N − N−1

K

)
> M , then there is no feasible federated schedule for task set τcounter

on M processors at such a speed s.

Proof. If Ci

Dis
> 1, the concept of federated scheduling, i.e., tasks that are permitted to

execute upon more than one processor are granted exclusive access to the processors
upon which they execute, would need to execute task τi exclusively on at least

⌈
Ci

Dis

⌉
processors at speed s exclusively to serve task τi.

For task τ1, at least
⌈
C1

D1s

⌉
> 1

1− 1
K

> 1 processors are needed to ensure the fea-

sibility of task τ1. Moreover, for i = 2, 3, . . . , N , we have
⌈
Ci

Dis

⌉
≥ Ki−2(K−1)M

Ki−1s =

(1 − 1
K)Ms > 1. Therefore, the assumption s < (1 − 1

K)M implies that a federated
scheduling algorithm has to run these N tasks exclusively on the granted processors.
So, task τi is assigned to be executed on at least

⌈
Ci

Dis

⌉
dedicated processors. Therefore,

if s < (1− 1
K)M , the number of processors in federated scheduling requires at least

N∑
i=1

⌈
Ci
Dis

⌉
≥ M

s
+

N∑
i=2

Ki−2(K − 1)M

Ki−1s
=
M

s
+
M

s

N∑
i=2

(
1− 1

K

)
=
M

s

(
N − N − 1

K

)
.

Therefore, if s < (1 − 1
K)M and M

s

(
N − N−1

K

)
> M , then there is no feasible

federated schedule for task set τcounter on M processors at such a speed s.

For the example task set in Table 1, suppose that the speedup factor is 5 − ε with
ε > 0. Then, we can conclude that τ1 needs at least three processors and each task τi
for i = 2, 3, . . . , 10 needs exclusively at least two processors. Therefore, at least 21

4

processors are needed in this example task set under any federated scheduling with a
speedup factor 5−ε. The lower bound of Lemma 2 concludes that at least 10

5−ε (10−
9
2) >

11 processors are needed. Therefore, the speedup factor of any federated scheduling
algorithm with respect to any optimal scheduling algorithm by considering this concrete
example is at least 5. We now conclude the lower bound of the speedup factors of any
federated scheduling algorithms with respect to any optimal scheduling algorithm.

Theorem 1. The speedup factor of any federated scheduling algorithm with respect
to any optimal scheduling algorithm for constrained-deadline task systems with DAG
structures is at least min

{(
1− 1

K

)
M,
(
N − N−1

K

)}
.

Proof. By Lemma 1, task set τcounter admits feasible schedules. By Lemma 2, if s <
(1 − 1

K)M and M
s

(
N − N−1

K

)
> M , then there is no feasible federated schedule for

task set τcounter on M processors at such a speed s. This implies that the resulting
federated schedule under a speedup factor s with s < (1 − 1

K)M and s < N − N−1
K

is not feasible on M processors. Therefore, for the task set τcounter, the speedup factor
of any federated scheduling must be at least min

{(
1− 1

K

)
M,
(
N − N−1

K

)}
.

WhenK is 2, the speedup factor lower bound in Theorem 1 is at least min{M/2, (N+
1)/2}. As a conclusion, for the task set τcounter, any federated schedule has a speedup
factor at least Ω (min{M,N}) with respect to any optimal scheduling algorithm.

3 Conclusion and Discussions

The result in this paper shows that at least in terms of the speedup metric with respect
to any optimal scheduling algorithm, federated scheduling strategies do not yield any
constant speedup factors for constrained-deadline task systems with DAG structures.
This also invalidates the conclusions of the algorithms in [1,2,3]:

Baruah [1,2,3]: Our worst-case bounds indicate that at least in terms of the
speedup metric, there is no loss in going from the three-parameter sporadic
tasks model to the more general sporadic DAG tasks model.

That is, the above conclusions in [1,2,3] stated that the DAG structures (more precisely
with the option of parallel executions) in addition to the traditional sporadic task model
(by using only three parameters Ti, Ci, Di for task τi with an assumption Ci ≤ Di) do
not introduce additional penalty with respect to the speedup factors. The statement is
only correct when the reference scheduling algorithm is the optimal federated schedul-
ing algorithms. For the traditional sporadic task model without parallelism, there are
scheduling algorithms with a constant speedup factor 3 − 1/M with respect to any
optimal scheduling algorithm [5]. With the example provided in this paper, the above
statement in [1,2,3] does not hold when we consider the speedup factors with respect to
any optimal scheduling algorithm.

References
1. S. Baruah. The federated scheduling of constrained-deadline sporadic DAG task systems. In

Proceedings of the Design, Automation & Test in Europe Conference & Exhibition, DATE,
pages 1323–1328, 2015.

5

2. S. Baruah. Federated scheduling of sporadic DAG task systems. In IEEE International Par-
allel and Distributed Processing Symposium, IPDPS, pages 179–186, 2015.

3. S. Baruah. The federated scheduling of systems of conditional sporadic DAG tasks. In Pro-
ceedings of the 15th International Conference on Embedded Software (EMSOFT), 2015.

4. S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively scheduling hard-real-time sporadic
tasks on one processor. In IEEE Real-Time Systems Symposium, pages 182–190, 1990.

5. J.-J. Chen and S. Chakraborty. Resource augmentation bounds for approximate demand bound
functions. In IEEE Real-Time Systems Symposium, pages 272 – 281, 2011.

6. J. Li, J. Chen, K. Agrawal, C. Lu, C. D. Gill, and A. Saifullah. Analysis of federated and
global scheduling for parallel real-time tasks. In 26th Euromicro Conference on Real-Time
Systems, ECRTS, pages 85–96, 2014.

6

	Federated Scheduling Admits No Constant Speedup Factors for Constrained-Deadline DAG Task Systems

