Abstract
We propose a novel approach for the identification of human implicit visual search intention based on eye movement patterns and pupillary analysis, in general, as well as pupil size, gradient of pupil size variation, fixation length and fixation count corresponding to areas of interest, and fixation count corresponding to non-areas of interest, in particular. The proposed model identifies human implicit visual search intention as task-free visual browsing or task-oriented visual search. Task-oriented visual search is further identified as task-oriented visual search intent generation, task-oriented visual search intent maintenance, or task-oriented visual search intent disappearance. During a visual search, measurement of the pupillary response is greatly influenced by external factors such the intensity and size of the visual stimulus. To alleviate the effects of external factors, we propose a robust baseline model that can accurately measure the pupillary response. Graphical representation of the measured parameter values shows significant differences among the different intent conditions, which can then be used as features for identification. By using the eye movement patterns and pupillary analysis, we can detect the transitions between different implicit intentions—task-free visual browsing intent to task-oriented visual search intent and task-oriented visual search intent maintenance to task-oriented visual search intent disappearance—using a hierarchical support vector machine. In the proposed model, the hierarchical support vector machine is able to identify the transitions between different intent conditions with greater than 90 % accuracy.















Similar content being viewed by others
References
Ahsan, M.R., Ibrahimy, M.I., O-Khalifa, O.: EMG signal classification for human computer interaction: a review. Eur. J. Sci. Res. 33, 480–501 (2009)
Beatty, J.: Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychol. Bull. 91, 276–292 (1982)
Bradshaw, J.L.: Pupil size and problem solving. Quaterly J. Exp. Psychol. 20, 116–122 (1968)
Carnel, E., Crawford, S., Chen, H.: Browsing in hypertext: a cognitive study. IEEE Transact. Syst. Man Cybern. 22, 865–884 (1992)
Chen, Z., Lin, F., Liu, H., Ma, W.Y., Wenyin, L.: User intention modelling in web applications using data mining. Internet Web Inf. Syst. J, Kluwer Academic Publishers 5, 181–192 (2002)
Claudio, M. P., Laura, W. R., Thom, C., Stanley, K., Mario, A.: The Pupil Dilation Response to Visual Detection, Human Vision and Electronic Imaging XIII / SPIE-IS &T, vol. 6806, pp. 68060T–68060T-11 (2008)
Duchowski, A.: Eye Tracking Methodology: Theory and Practice. Springer, Heidelberg (2007)
Dumais, S., Chen, H.: Hierarchical classification of Web content, presented at the Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval, pp. 256–263. Greece, Athens (2000)
Erol, A., Bebis, G., Nicolescu, M., Boyle, R. D., Twombly, X.: Vision-Based Hand Pose Estimation: A Review, Computer Vision and Image Understanding, vol. 108, pp. 52–73. (2007)
Eye tracking system of Tobii technology, http://www.tobii.com/ (2007)
Ferreira, A., Celeste, W. C., Cheein, F. A., Bastos-Filho, T. F., Sarcinelli-Filho, M., Carelli, R.: Human-machine interfaces based on EMG and EEG applied to robotic systems, J. NeuroEng. Rehabil. pp. 5–10 (2008)
Fleetwood, M.D., Byrne, M.D.: Modeling the visual search of displays: a revised ACT-R model of icon search based on eye-tracking data. Hum. Comput. Interact. 21, 153–197 (2006)
Gareze, L., Harris, J.M., Barenghi, C.F., Tadmor, Y.: Characterising patterns of eye movements in natural images and visual scanning. J. Mod. Opt. 55, 533–555 (2008)
Goldwater, B.: Psychological significance of pupillary movements. Psychol. Bull. 77, 340–355 (1972)
Goodrich, M.A., Schultz, A.C.: Human-robot interaction: a survey. Found. Trends Hum.-Comput. Interact 1(3), 203–275 (2007)
Granholm, E., Asarnow, R.F., Sarkin, A.J., Dykes, K.L.: Pupillary responses index cognitive resource limitations. Psychophysiology 33, 457–461 (1996)
Granka, L.A., T. Joachims, et al.: Eye-tracking analysis of user behavior in WWW search. Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval. Sheffield, United Kingdom, ACM, pp. 478–479 (2004)
Hakerem, G., Sutton, S.: Pupillary response at visual threshold. Nature 212, 485–486 (1966)
Hakerem, G., Sutton, S., Zubin, J.: Parameters of the Pupillary Response, in Meetings of the Psychonomic Society, pp. 1–10 (1960)
Halverson, T., Hornof, A.J.: A computational model of “Active Vision” for visual search in human-computer interaction. Hum.-Comput. Interact. 26, 285–314 (2011)
Hess, E.H.: Attitude and pupil size. Sci. Am. 212, 46–54 (1965)
Hess, E.H., Polt, J.M.: Pupil size in relation to mental activity during problem-solving. Science 143, 1190–1192 (1964)
Hoecks, B., Levelt, W.: Pupillary dilation as a measure of attention: a quatitative system analysis. Behav. Res. Methods Instrum. Comput. 25, 16–26 (1993)
Holmqvist, K., Nyström, M., et al. Eye Tracking: A Comprehensive Guide to Methods and Measures, Oxford University Press, Oxford (2011)
Iqbal, S. T., Zheng, X. S., Bailey, B. P.: Task-evoked pupillary response to mental worload in human-computer interaction, Human factors in, computing systems, pp. 1477–1480 (2004)
Jaimes, A., Sebe, N.: Multimodal human-computer interaction: a survey. Comput. Vis. Image Underst. 108, 116–134 (2007)
Jang, Y.-M., Lee, S., Mallipeddi, R., Kwak, H.-W., Lee, M.: Recognition of human’s implicit intention based on an eyeball movement pattern analysis. Lect. Notes Comput. Sci. 7062, 138–145 (2011)
Jang, Y.-M., Mallipeddi, R., Lee, S., Kwak, H.-W., Lee, M.: Human implicit intent transition detection based on pupillary analysis. IEEE International Conference on Neural Networks (IJCNN), pp. 1–7, Brisbane, Australia (2012)
Janisse, M.P.: Pupillometry: The Psychology of the Pupillary Response. Hemisphere Publishing Co., Washington, D. C. (1977)
Jansen, B.J., Booth, D.L., Spink, A.: Determining the informational, navigational, and transactional intent of Web queries. Inf. Process. Manag. 44, 1251–1266 (2008)
Just, M.A., Carpenter, P.A.: Eye fixations and cognitive processes. Cogn. Psychol. 8, 441–480 (1976)
Kahneman, D., Peavler, W.S.: Incentive effects and pupillary changes in association learning. J. Exp. Psychol. 79, 312–318 (1969)
Kahneman, D., Beatty, J.: Pupil diameter and load on memory. Science 154, 1583–1585 (1966)
Kecman, V.: Learning and Soft Computing. MIT Press, Cambridge (2001)
Kendall, E., A.: An Introduction to Numerical Analysis, 2nd edn. Wiley, New York (1989)
Klingner, J., Kumar, R., Hanrahan, P.: Measuring the task-evoked pupillary response with a remote eye tracker. Proceedings of the: symposium on Eye tracking research & applications, pp. 69–72. Savannah, Georgia, ACM (2008)
Land, M.F., Tatler, B.W.: Looking and Acting: Vision and Eye Movements in Natural Behaviour. Oxford University Press, Oxford (2009)
Libby, W.L., Lacey, B.C., Lacey, J.I.: Pupillary and cardiac activity during visual attention. Psychophysiology 10, 270–294 (1973)
Liu, J., Cole, M. J., Liu, C., Bierig, R., Gwizdka, J. Belkin, N., J., Zhang, J., Zhang, X.: Search behaviors in different task types. Proceedings of the 10th annual joint conference on digital libraries. pp. 69–78. Gold Coast, Queensland, Australia, ACM (2010)
Lorigo, L., Haridasan, M.: Eye tracking and online search: lessons learned and challenges ahead. J. Am. Soc. Inf. Sci. Technol. 59(7), 1041–1052 (2008)
Lowenstein, O., Lowenfeld, I. E. : The Pupil, vol. 3. Academic Press, New York (1962)
Majaranta, P., Räihä K.-J. (2002). Twenty years of eye typing: systems and design issues. Proceedings of the: symposium on Eye tracking research & applications, pp. 15–22. New Orleans, Louisiana, ACM (2002)
Majaranta, P., Aoki, H. et al.: Gaze Interaction and Applications of Eye Tracking, Advances in Assistive Technologies (2011)
Marchionini, G.: Information Seeking in Electronic Environments. Cambridge University Press, Cambridge (1995)
Marshall, S. P., Pleydell-Pearce, C., Dickson, B. T.: Integrating psychophysiological measures of cognitive workload and eye movements to detect strategy shifts, International Conference on System Sciences, pp. 1–6, Hawaii (2003)
Oliveira, F.T.P., Aula, A., Russell, D.M.: Discriminating the Relevance of Web Search Results with Measures of Pupil Size, in Human Factors in Computing Systems, pp. 2209–2212. Boston, USA (2009)
Oyekoya, O., Stentiford, F.: Eye tracking: a new interface for visual exploration. BT Technol. J. 24(3), 57–66 (2006)
Paivio, A., Simpson, H.M.: The effect of word abstractness and pleasantness on pupil size during an imagery task. Psychon. Sci. 5, 55–56 (1966)
Park, S.-M., Ko, K.-E., Park, J., Sim, K.-B.: A study on hybrid model of HMMs and GMMs for mirror neuron system modeling using EEG signals, IEEE International Conference on Fuzzy Systems, pp. 2752–2755 (2011)
Pomplun, M., Sunkara, S.: Pupil Dilation as an Indicator of Cognitive Workload in Human-Computer Interaction. International Conference on Human-Computer Interaction, pp. 1–5, Crete, Greece (2003)
Poole, A., Ball, L.J.: Eye Tracking in Human-Computer Interaction and Usability Research: Current Status and Future Prospects. Encyclopedia of Human-Computer Interaction. C. Ghaoui. Pennsylvania, Idea Group, Inc. (2005)
Premack, D., Woodruff, G.: Does the chimpanzee have a theory of mind? Behav. Brain Sci. 1, 515–526 (1978)
Rani, P., Sarkar, N.: Anxiety-based affective communication for implicit human-machine interaction. Adv. Eng. Inform. 21(3), 323–334 (2007)
Ratwani, R.M., Trafton, J.G.: A real-time eye tracking system for predicting and preventing postcompletion errors. Hum.-Comput. Interact. 26, 205–245 (2011)
Rayner, K., Pollatsek, A.: The Psychology of Reading. Prentice Hall, Englewood Cliffs (1989)
Rose, D. E., Levinson, D.: Understanding User Goals in Web Search, in Proceedings of the 13th International Conference on, World Wide Web, pp. 13–19 (2004)
Salvucci, D.D.: Inferring intent in eye-based interfaces: tracing eye movements with process models, pp. 254–261. Proceedings of the SIGCHI conference on Human Factors in Computing Systems. Pittsburgh, Pennsylvania, United States, ACM (1999)
Salvucci, D. D., J. H. Goldberg (2000). Identifying fixations and saccades in eye-tracking protocols. Proceedings of the: symposium on Eye tracking research & applications, pp. 71–78. Palm Beach Gardens, Florida, United States, ACM (2000)
Salvucci, D.D., Anderson, J.R.: Automated eye-movement protocol analysis. Hum.-Comput. Interact. 16, 39–86 (2001)
Schwarz, U., Schmuckle, T.: Cognitive eyes. Schweiz Arch. Neurol. Psychiatr. 153, 175–179 (2002)
Schütz, A.C., Braun, D.I., Gegenfurtner, K.R.: Eye movements and perception: a selective review. J. Vis. 11, 1–30 (2011)
Selker, T.: Visual attentive interfaces. BT Technol. J. 22(4), 146–150 (2004)
Simpson, H.M., Paivio, A.: Changes in pupil size during an imagery task without motor response involvement. Psychon. Sci. 5, 405–406 (1966)
Sodhi, M., Reimer, B., et al.: On-road driver eye movement tracking using head-mounted devices. Proceedings of the: symposium on eye tracking research \(\backslash \) & applications, pp. 61–68. New Orleans, Louisiana, ACM (2002)
Spyrou, T., Darzentas, J.: Intention Modelling: Approximating Computer User Intentions for Detection and Prediction of Intrusions. Chapman & Hall, London (1996)
Steinhauer, S.R., Boller, F., Zubin, J., Pearlman, S.: Pupillary dilation to emotional visual stimuli revisited. Psychophysiology 20, 472 (1983)
Wegner, D.M.: The Illusion of Conscious Will. MIT Press, Cambridge (2002)
Wong, F., Park, K.-H., Kim, D.-J., Jung, J.-W., Bien, Z.: Intention reading towards engineering applications for the elderly and people with disabilities. Int. J. ARM 7, 3–15 (2006)
Wright, P., Kahneman, D.: Evidence for alternative strategies of sentence retention. Quaterly J. Exp. Psychol. 23, 197–213 (1971)
Yarbus, A.L.: Eye Movements and Vision. Plenum Press, New York (1967)
Youn, S.-J., Oh, K.-W.: Intention recognition using graph representation. World Acad. Sci. Eng. Technol. 25, 13–18 (2007)
Young, F.A., Biersdorf, W.R.: Pupillary contraction and dilation in light and darkness. J. Comp. Physiol. Psychol. 47, 264–268 (1954)
Zhai, S., Morimoto, C., Ihde, S.: Manual and gaze input cascaded (MAGIC) pointing, Proceedings ACM, pp. 246–253 (1999)
Acknowledgments
This research was supported by the Converging Research Center Program funded by the Ministry of Education, Science and Technology (2012K001342) (50 %) and also by the Original Technology Research Program for Brain Science through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012-0005794) (50 %).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jang, YM., Mallipeddi, R. & Lee, M. Identification of human implicit visual search intention based on eye movement and pupillary analysis. User Model User-Adap Inter 24, 315–344 (2014). https://doi.org/10.1007/s11257-013-9142-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11257-013-9142-7