Abstract
Recommender Systems help us deal with information overload by suggesting relevant items based on our personal preferences. Although there is a large body of research in areas such as movies or music, artwork recommendation has received comparatively little attention, despite the continuous growth of the artwork market. Most previous research has relied on ratings and metadata, and a few recent works have exploited visual features extracted with deep neural networks (DNN) to recommend digital art. In this work, we contribute to the area of content-based artwork recommendation of physical paintings by studying the impact of the aforementioned features (artwork metadata, neural visual features), as well as manually-engineered visual features, such as naturalness, brightness and contrast. We implement and evaluate our method using transactional data from UGallery.com, an online artwork store. Our results show that artwork recommendations based on a hybrid combination of artist preference, curated attributes, deep neural visual features and manually-engineered visual features produce the best performance. Moreover, we discuss the trade-off between automatically obtained DNN features and manually-engineered visual features for the purpose of explainability, as well as the impact of user profile size on predictions. Our research informs the development of next-generation content-based artwork recommenders which rely on different types of data, from text to multimedia.








Similar content being viewed by others
Notes
Our collaborators at UGallery requested us not to disclose the exact dates when the data was collected.
To obtain the weights for the different methods, we initialize the coefficients based on the individual performance (concretely, Recall@10) of each method and then we iterate with a grid search, each time narrowing the weight search space in a greedy fashion. The performance tend to converge after two to three iterations.
References
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)
Aggarwal, C.C.: Content-based recommender systems. In: Recommender Systems, pp. 139–166. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-29659-3_4
Akay, S., Kundegorski, M.E., Devereux, M., Breckon, T.P.: Transfer learning using convolutional neural networks for object classification within X-ray baggage security imagery. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 1057–1061 (2016)
Albanese, M., d’Acierno, A., Moscato, V., Persia, F., Picariello, A.: A multimedia semantic recommender system for cultural heritage applications. In: Proceedings of the Fifth IEEE International Conference on Semantic Computing (ICSC), pp. 403–410 (2011)
Amatriain, X.: Mining large streams of user data for personalized recommendations. ACM SIGKDD Explor. Newsl. 14(2), 37–48 (2013)
Aroyo, L., Wang, Y., Brussee, R., Gorgels, P., Rutledge, L., Stash, N.: Personalized museum experience: the rijksmuseum use case. In: Proceedings of Museums and the Web (2007)
Bennett, J., Lanning, S., et al.: The netflix prize. In: Proceedings of KDD Cup and Workshop, vol. 2007, p. 35 (2007)
Benouaret, I., Lenne, D.: Personalizing the museum experience through context-aware recommendations. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 743–748 (2015)
Celma, O.: Music recommendation. In: Music Recommendation and Discovery, pp. 43–85. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-13287-2_3
Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-n recommendation tasks. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10, pp. 39–46 (2010)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR) 1, 886–893 (2005)
David, O.E., Netanyahu, N.S.: DeepPainter: Painter Classification Using Deep Convolutional Autoencoders, pp. 20–28. Springer, Berlin (2016)
de Gemmis, M., Lops, P., Musto, C., Narducci, F., Semeraro, G.: Semantics-aware content-based recommender systems. In: Recommender Systems Handbook, pp. 119–159. Springer, Berlin (2015)
Deldjoo, Y., Elahi, M., Cremonesi, P., Garzotto, F., Piazzolla, P., Quadrana, M.: Content-based video recommendation system based on stylistic visual features. J. Data Semant. 5(2), 99–113 (2016)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255 (2009)
Ekstrand, M.D., Kluver, D., Harper, F.M., Konstan, J.A.: Letting users choose recommender algorithms: an experimental study. In: Proceedings of the 9th ACM Conference on Recommender Systems, RecSys ’15, pp. 11–18 (2015). https://doi.org/10.1145/2792838.2800195
Elahi, M., Deldjoo, Y., Bakhshandegan Moghaddam, F., Cella, L., Cereda, S., Cremonesi, P.: Exploring the semantic gap for movie recommendations. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, RecSys’17, pp. 326–330 (2017)
Esman, A.R.: The World’s Strongest Economy? The Global Art Market. https://www.forbes.com/sites/abigailesman/2012/02/29/the-worlds-strongest-economy-the-global-art-market/ (2012). Accessed 21 March 2017
Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576 (2015)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
Gomez-Uribe, C.A., Hunt, N.: The netflix recommender system: algorithms, business value, and innovation. ACM Trans. Manag. Inf. Syst. (TMIS) 6(4), 13 (2016)
Gonzalez, R.C., Eddins, S.L., Woods, R.E.: Digital Image Publishing Using MATLAB. Prentice Hall, Upper Saddle River (2004)
Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. 5(4), 19:1–19:19 (2015)
He, R., Fang, C., Wang, Z., McAuley, J.: Vista: A visually, socially, and temporally-aware model for artistic recommendation. In: Proceedings of the 10th ACM Conference on Recommender Systems, RecSys ’16, pp. 309–316 (2016)
He, R., McAuley, J.: VBPR: Visual Bayesian personalized ranking from implicit feedback. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 144–150 (2016)
Hidasi, B., Quadrana, M., Karatzoglou, A., Tikk, D.: Parallel recurrent neural network architectures for feature-rich session-based recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems, RecSys’16, pp. 241–248 (2016)
Kannala, J., Rahtu, E.: Bsif: Binarized statistical image features. In: Proceedings of 21st International Conference on Pattern Recognition (ICPR), pp. 1363–1366 (2012)
Karnowski, J.: AlexNet + SVM. https://jeremykarnowski.files.wordpress.com/2015/07/alexnet2.png (2015). Accessed 1 Dec 2017
Knijnenburg, B.P., Bostandjiev, S., O’Donovan, J., Kobsa, A.: Inspectability and control in social recommenders. In: Proceedings of the Sixth ACM Conference on Recommender Systems, pp. 43–50 (2012)
Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: Proceedings of ICML Deep Learning Workshop, vol. 2 (2015)
Konstan, J.A., Riedl, J.: Recommender systems: from algorithms to user experience. User Model. User Adapt. Interact. 22(1–2), 101–123 (2012)
Koren, Y.: Collaborative filtering with temporal dynamics. Commun. ACM 53(4), 89–97 (2010)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of Advances in Neural Information Processing Systems 25(NIPS), pp. 1097–1105 (2012)
La Cascia, M., Sethi, S., Sclaroff, S.: Combining textual and visual cues for content-based image retrieval on the world wide web. In: Proceedings of the IEEE Workshop on Content-Based Access of Image and Video Libraries, pp. 24–28 (1998)
Lacic, E., Kowald, D., Eberhard, L., Trattner, C., Parra, D., Marinho, L.B.: Utilizing online social network and location-based data to recommend products and categories in online marketplaces. In: Atzmueller M., Chin A., Scholz C., Trattner C. (eds) Mining, Modeling, and Recommending ‘Things’ in Social Media. MUSE 2013, MSM 2013. Lecture Notes in Computer Science, vol 8940. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14723-9_6
Larrain, S., Trattner, C., Parra, D., Graells-Garrido, E., Nørvåg, K.: Good times bad times: a study on recency effects in collaborative filtering for social tagging. In: Proceedings of the 9th ACM Conference on Recommender Systems, RecSys’15, pp. 269–272 (2015)
Lei, C., Liu, D., Li, W., Zha, Z.J., Li, H.: Comparative deep learning of hybrid representations for image recommendations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2545–2553 (2016)
Liao, W.H., Young, T.J.: Texture classification using uniform extended local ternary patterns. In: Proceedings of IEEE International Symposium on Multimedia (ISM), pp. 191–195 (2010)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Maaten, L.V.D., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)
Macedo, A.Q., Marinho, L.B., Santos, R.L.: Context-aware event recommendation in event-based social networks. In: Proceedings of the 9th ACM Conference on Recommender Systems, pp. 123–130 (2015)
Maes, P., et al.: Agents that reduce work and information overload. Commun. ACM 37(7), 30–40 (1994)
Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to Information Retrieval, vol. 1. Cambridge University Press Cambridge, Cambridge (2008)
Mathieu, M.F., Zhao, J.J., Zhao, J., Ramesh, A., Sprechmann, P., LeCun, Y.: Disentangling factors of variation in deep representation using adversarial training. In: Proceedings of Advances in Neural Information Processing Systems, pp. 5040–5048 (2016)
McAuley, J., Targett, C., Shi, Q., Van Den Hengel, A.: Image-based recommendations on styles and substitutes. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 43–52 (2015)
Mensink, T., Van Gemert, J.: The rijksmuseum challenge: Museum-centered visual recognition. In: Proceedings of International Conference on Multimedia Retrieval, p. 451 (2014)
Nguyen, A., Yosinski, J., Clune, J.: Multifaceted feature visualization: uncovering the different types of features learned by each neuron in deep neural networks. arXiv preprint arXiv:1602.03616 (2016)
Nunes, I., Jannach, D.: A systematic review and taxonomy of explanations in decision support and recommender systems. User Model. User Adapt. Interact. 27(3), 393–444 (2017)
Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 29(1), 51–59 (1996)
Olah, C., Mordvintsev, A., Schubert, L.: Feature visualization. Distill (2017) . https://doi.org/10.23915/distill.00007
Parra, D., Brusilovsky, P.: User-controllable personalization: a case study with setfusion. Int. J. Hum. Comput. Stud. 78, 43–67 (2015)
Parra, D., Sahebi, S.: Recommender systems: sources of knowledge and evaluation metrics. In: Advanced Techniques in Web Intelligence-2, pp. 149–175. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-33326-2_7
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)
Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 452–461 (2009)
Rui, Y., Huang, T.S., Ortega, M., Mehrotra, S.: Relevance feedback: a power tool for interactive content-based image retrieval. IEEE Trans. Circuits Syst. Video Technol. 8(5), 644–655 (1998)
Rush, J.C.: Acquiring a concept of painting style. Stud. Art Educ. 20(3), 43–51 (1979)
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
San Pedro, J., Siersdorfer, S.: Ranking and classifying attractiveness of photos in folksonomies. In: Proceedings of the 18th International Conference on World Wide Web, WWW’09, pp. 771–780 (2009)
Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)
Semeraro, G., Lops, P., De Gemmis, M., Musto, C., Narducci, F.: A folksonomy-based recommender system for personalized access to digital artworks. J. Comput. Cult. Herit. (JOCCH) 5(3), 11 (2012)
Shankar, D., Narumanchi, S., Ananya, H., Kompalli, P., Chaudhury, K.: Deep learning based large scale visual recommendation and search for e-commerce. arXiv preprint arXiv:1703.02344 (2017)
Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 806–813 (2014)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of AAAI, vol. 4, p. 12 (2017)
Tintarev, N., Masthoff, J.: Explaining recommendations: design and evaluation. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6_10
Trattner, C., Elsweiler, D.: Investigating the healthiness of internet-sourced recipes: implications for meal planning and recommender systems. In: Proceedings of the 26th International Conference on World Wide Web, pp. 489–498 (2017)
Verbert, K., Parra, D., Brusilovsky, P., Duval, E.: Visualizing recommendations to support exploration, transparency and controllability. In: Proceedings of the 2013 International Conference on Intelligent User Interfaces, pp. 351–362 (2013)
Wang, J., Song, Y., Leung, T., Rosenberg, C., Wang, J., Philbin, J., Chen, B., Wu, Y.: Learning fine-grained image similarity with deep ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1386–1393 (2014)
Weinswig, D.: Art Market Cooling, But Online Sales Booming. https://www.forbes.com/sites/deborahweinswig/2016/05/13/art-market-cooling-but-online-sales-booming/ (2016). Accessed 21 March 2017
Yang, L., Cui, Y., Zhang, F., Pollak, J.P., Belongie, S., Estrin, D.: PlateClick: bootstrapping food preferences through an adaptive visual interface. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM’15, pp. 183–192 (2015)
Acknowledgements
This research has been supported by the Chilean research agency Conicyt, under Fondecyt Grant 11150783, and partially funded by the Millennium Institute for Foundational Research on Data (IMFD). We also acknowledge the help from Felipe del Río and Domingo Mery, who helped us frame some evaluations and provided us with some interesting ideas for future work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Messina, P., Dominguez, V., Parra, D. et al. Content-based artwork recommendation: integrating painting metadata with neural and manually-engineered visual features. User Model User-Adap Inter 29, 251–290 (2019). https://doi.org/10.1007/s11257-018-9206-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11257-018-9206-9