Abstract
We present a regularized method for solving an inverse problem in Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) data. In the case of brain images, DT-MR imagery technique produces a tensor field that indicates the local orientation of nerve bundles. Now days, the spatial resolution of this technique is limited by the partial volume effect produced in voxels that contain fiber crossings or bifurcations. In this paper, we proposed a method for recovering the intra-voxel information and inferring the brain connectivity. We assume that the observed tensor is a linear combination of a given tensor basis, therefore, the aim of our approach is the computation of the unknown coefficients of this linear combination. By regularizing the problem, we introduce the needed prior information about the piecewise smoothness of nerve bundles orientation. As a result, we recover a multi-tensor field. Moreover, for estimating the nerve bundles trajectory, we propose a method based on stochastic walks of particles through the computed multi-tensor field. The performance of the method is demonstrated by experiments in both synthetic and real data.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Basser, P.J., Pajevic, S., Pierpaoli, C., and Aldroubi A. 2002. Fiber tract following in the human brain using DT-MRI data. In IEICE Trans Inf Sys, vol. E85D, pp. 15–21.
Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., and Aldroubi, A. 1996. Microstructural and physiological features of tissues elucidated by quantitative–diffusion–tensor MRI. J. Magn.Reson., 111:209–219.
Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., and Aldroubi, A. 2000. In Vivo Fiber Tractography Using DT-MRI Data. Magn. Reson. Med., 44: 625–632.
Björnemo, M. and Anders, B. 2002. White Matter Fiber Tracking Using Diffusion Tensor MRI. Reg nr: Liu-imt-ex-321, Linköping University.
Buxton, R. 2002. Introduction to Functional Magnetic Resonance Imaging Principles and Techniques. Cambridge University Press.
Gee, J.C., Alexander, D.C., Rivera, M., and Duda, J.T. 2002. Non-rigid registration of diffusion Tensor MR Images. In I. Press (ed.), IEEE International Symposium on Biomedical Imaging, pp. 477–480.
Geman, S. and Geman, D. 1984, Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6): 721–741.
Hastie, T., Tibshirani, R., and Friedman, J. 2001. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag.
Lazar, M., Weinstein, D.M., Tsuruda, J.S., Hasan, K.M., Arfanakis, K., Meyerand, M.E., Badie, B., Rowley, H., Haughton, V., Field, A., and Alexander, A.L. 2003. White matter tractography using diffusion tensor deflection. Hum Brain Mapp, 18(4): 306–21.
Li, S.Z. 2001. Markov Random Field Modeling in Image Analysis. Springer Verlag.
Mardia, K.V. 1972. Statistics of Directional Data. Academic Press.
O’Donnell, L., Haker, S., and Westin, C.F. 2002. New Approaches to Estimation of White Matter Connectivity in Diffusion Tensor MRI: PDE-Based and Geodesics in a Tensor-Warped Space. In Fifth International Conference on Medical Image Computing and Computer-Assisted Intervention – MICCAI’02.
Pajevic, S., Aldroubi, A., and Basserz, P.J. 2002. A Continuous Tensor Field Approximation of Discrete DT-MRI Data for Extracting Microstructural and Architectural Features of Tissue. Journal of Magnetic Resonance, 154: 85–100.
Parker, G.J.M., Wheeler-Kingshott, C.A.M., and Barker, G.J. 2002. Estimating Distributed Anatomical Brain Connectivity Using Fast Marching Methods and Diffusion Tensor Imaging. IEEE Transactions on Medical Imaging, 21(5): 505–512.
Poldrack, R.A. 2001. A structural basis for developmental dyslexia: Evidence from diffusion tensor imaging. In M. Wolf (ed.), Dyslexia, Fluency, and the Brain, pp. 213–233.
Poupon, C., Clark, C., Frouin, V., Regis, J., Bloch, I., Bihan, D.L., and Mangin, J. 2000. Regularization of diffusionbased direction maps for the tracking of brain white matter fascicles. Neuroimage, 12: 184–195.
Ramirez-Manzanares, A. and Rivera, M. 2003. Brain Nerve Bundles Estimation by Restoring and Filtering Intra-Voxel Information in Diffusion Tensor MRI. In 2nd IEEE Workshop on Variational, Geometric and Level Sets Methods in Computer Vision (VLSM 2003), Nice France, pp. 71–80.
Ramirez-Manzanares, A., Rivera, M., Vemuri, B., and Mareci, T. 2004. Basis Functions for Estimating Intraoxel Structure in DW–MRI. In Procc. IEEE Medical Imaging Conference 2004 (MIC 2004), Rome, Italy, 7:4207–4211, October 2004. Digital Object Identifier 10.1109/NSSMIC.2004.1466819.
Ruiz-Alzola, J., Westin, C.F., Warfield To appear, S.K., Nabavi, A., and Kikinis, R. 2000. Nonrigid Registration of 3D Scalar, Vector and Tensor Medical Data. In MICCAI 2000, pp. 541–550.
Tschumperlé, D. and Deriche, R. 2002. Orthonormal Vector Sets Regularization with PDE’s and Applications. In IJCV, International Journal of Computer Vision.
Tschumperlé, D. and Deriche, R. 2003a. Tensor Field Visualization with and Application to DT-MRI Fiber Visualization. In VLSM 03, pp. 255–262.
Tschumperlé, D. and Deriche, R. 2003b. Variational Frameworks for DT-MRI Estimation, Regularization and Visualization. In 9 th IEEE International Conference on Computer Vision, vol. 1, pp.116–121.
Tuch, D. S. 2002. Diffusion MRI of Complex Tissue Structure. Ph.D. thesis, Harvard-MIT.
Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., and Wedeen, V.J. 2002. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magnetic Resonance in Medicine, 48(4): 577.
Tuch, D.S., Weisskoff, R.M., Belliveau, J.W. and Wedeen, V.J. 1999. High angular resolution diffusion imaging of the human brain. In Proc.7th Annual Meeting of ISMRM, vol. 321.
Vigueras, F. 2001. Filtrado y segmentacion de imagenes usando difusion anisotropica. Master’s thesis, Centro de Investigacion en Matematicas (CIMAT).
Wang, Z., Vemuri, B.C., Chen, Y., and Mareci, T. 2003. A Constrained Variational Principle for Direct Estimation and Smoothing of the Diffusion Tensor Field from DWI. In IPMI 2003, pp. 660–671.
Westin, C., Maier, S., Mamata, H., Jolesz, F., and Kikinis, R. 2002. Processing and Visualization for Diffusion Tensor MRI. Medical Image Analysis, 6(2): 93–108.
Westin, C.F. and Maier, S.E. 2002. A dual tensor basis solution to the stejskal–tanner equations for DTMRI. In Proceedings of International Society for Magnetic Resonance in Medicine.
Westin, C.F., Maier, S.E., Khidhir, B., Everett, P., Jolesz, F.A., and Kikinis, R. 1999. Image Processing for Diffusion Tensor Magnetic Resonance Imaging. In C. A. Taylor C (ed.), MICCAI 99, pp. 441–452.
Wiegell, M.R., Henrik, M., Larsson, B.W., and Wedeen, V.J. 2000. Fiber Crossing in Human Brain Depicted with Diffusion Tensor MR Imaging. Radiology, 217: 897–903.
Zhang, S., Curry, T., Morris, D.S., and Laidlaw, D.H. 2000. Streamtubes and streamsurfaces for visualizing diffusion tensor MRI volume images. In Visualization ′00 Work in Progress.
Zhukov, L. and Barr, A. 2002. Oriented Tensor Reconstruction: Tracing Neural Pathways from Diffusion Tensor MRI. In Proceedings of IEEE Visualization 2002, pp. 387–394.
Zhukov, L., Museth, K., Breen, D., Whitaker, R., and Barr, A. 2003. Level Set Modeling and Segmentation of DT-MRI Brain Data. Journal of Electronic Imaging, 12(1): 125–133.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ramirez-Manzanares, A., Rivera, M. Basis Tensor Decomposition for Restoring Intra-Voxel Structure and Stochastic Walks for Inferring Brain Connectivity in DT-MRI. Int J Comput Vision 69, 77–92 (2006). https://doi.org/10.1007/s11263-006-6855-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11263-006-6855-7