Skip to main content
Log in

Shape of Elastic Strings in Euclidean Space

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We construct a 1-parameter family of geodesic shape metrics on a space of closed parametric curves in Euclidean space of any dimension. The curves are modeled on homogeneous elastic strings whose elasticity properties are described in terms of their tension and rigidity coefficients. As we change the elasticity properties, we obtain the various elastic models. The metrics are invariant under reparametrizations of the curves and induce metrics on shape space. Analysis of the geometry of the space of elastic strings and path spaces of elastic curves enables us to develop a computational model and algorithms for the estimation of geodesics and geodesic distances based on energy minimization. We also investigate a curve registration procedure that is employed in the estimation of shape distances and can be used as a general method for matching the geometric features of a family of curves. Several examples of geodesics are given and experiments are carried out to demonstrate the discriminative quality of the elastic metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition using shape context. PAMI, 24, 509–522.

    Google Scholar 

  • Cohen, I., Ayache, N., & Sulger, P. (1992). Tracking points on deformable objects using curvature information. In Lecture notes in computer science (vol. 588). Berlin: Springer.

    Google Scholar 

  • do Carmo, M. P. (1994). Riemannian geometry. Basel: Birkhauser.

    Google Scholar 

  • Geiger, D., Gupta, A., Costa, L. A., & Vlontzos, J. (1995). Dynamic programming for detecting, tracking and matching elastic contours. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(3), 294–302.

    Article  Google Scholar 

  • Grenander, U. (1993). General pattern theory. Oxford: Oxford University Press.

    Google Scholar 

  • Joshi, S., Klassen, E., Srivastava, A., & Jermyn, I. (2007). An efficient representation for computing geodesics between n-dimensional elastic shapes. In IEEE conference on computer vision and pattern recognition.

  • Kendall, D. G. (1984). Shape manifolds, Procrustean metrics and complex projective spaces. Bulletin of London Mathematical Society, 16, 81–121.

    Article  MATH  MathSciNet  Google Scholar 

  • Klassen, E., & Srivastava, A. (2006). Geodesics between 3D closed curves using path straightening. In European conference on computer vision (ECCV).

  • Klassen, E., Srivastava, A., Mio, W., & Joshi, S. (2004). Analysis of planar shapes using geodesic paths on shape manifolds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 372–383.

    Article  Google Scholar 

  • Ling, H., & Jacobs, D. (2007). Shape classification using the inner distance. PAMI, 29(2), 286–299.

    Google Scholar 

  • Michor, P., & Mumford, D. (2006). Riemannian geometries on spaces of plane curves. Journal of the European Mathematical Society, 8, 1–48.

    Article  MATH  MathSciNet  Google Scholar 

  • Michor, P., & Mumford, D. (2007). An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Applied and Computational Harmonic Analysis, 23, 74–113.

    Article  MATH  MathSciNet  Google Scholar 

  • Michor, P., Mumford, D., Shah, J., & Younes, L. (2007). A metric on shape space with explicit geodesics. arXiv:0706.4299v1.

  • Mio, W., Bowers, J. C., Hurdal, M. K., & Liu, X. (2007a). Modeling brain anatomy with 3D arrangements of curves. In IEEE 11th international conference on computer vision (pp. 1–8).

  • Mio, W., Srivastava, A., & Joshi, S. (2007b). On shape of plane elastic curves. International Journal of Computer Vision, 73(3), 307–324.

    Article  Google Scholar 

  • Mio, W., Srivastava, A., & Klassen, E. (2004). Interpolations with elasticae in Euclidean spaces. Quarterly of Applied Mathematics, 62, 359–378.

    MATH  MathSciNet  Google Scholar 

  • Mumford, D. (2002). Pattern theory: The mathematics of perception. In Proc. of the international congress of mathematicians. Beijing, China.

  • Palais, R. S. (1963). Morse theory on Hilbert manifolds. Topology, 2, 299–340.

    Article  MATH  MathSciNet  Google Scholar 

  • Schmidt, F. R., Clausen, M., & Cremers, D. (2006). Shape matching by variational computation of geodesics on a manifold. In LNCS : Vol. 4174. Pattern recognition (Proc. DAGM) (pp. 142–151). Berlin: Springer.

    Chapter  Google Scholar 

  • Sebastian, T. B., Klein, P. N., & Kimia, B. B. (2003). On aligning curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(1), 116–125.

    Article  Google Scholar 

  • Sebastian, T. B., Klein, P. N., & Kimia, B. B. (2004). Recognition of shapes by editing their shock graphs. PAMI, 26(5), 550–571.

    Google Scholar 

  • Shah, J. (2006). An H 2 type Riemannian on the space of planar curves. In Workshop on the mathematical foundations of computational anatomy (MICCAI).

  • Söderkvist, O. (2001). Computer vision classification of leaves from Swedish trees. Master’s thesis, Linköping University.

  • Sundaramoorthi, G., Yezzi, A., & Mennucci, A. (2007). Sobolev active contours. The International Journal of Computer Vision, 73, 345–366.

    Article  Google Scholar 

  • Tagare, H. D. (1999). Shape-based non-rigid correspondence with applications to heart motion analysis. IEEE Transactions on Medical Imaging, 8(7), 570–579.

    Article  MathSciNet  Google Scholar 

  • Tagare, H. D., O’Shea, D., & Groisser, D. (2002). Non-rigid shape comparison of plane curves in images. Journal of Mathematical Imaging and Vision, 16, 57–68.

    Article  MATH  MathSciNet  Google Scholar 

  • Tu, Z., & Yuille, A. (2004). Shape matching and recognition using generative models and informative features. In European conference on computer vision (ECCV) (pp. 195–209).

  • Younes, L. (1998). Computable elastic distance between shapes. SIAM Journal of Applied Mathematics, 58, 565–586.

    Article  MATH  MathSciNet  Google Scholar 

  • Younes, L. (1999). Optimal matching between shapes via elastic deformations. Journal of Image and Vision Computing, 17(5/6), 381–389.

    Article  Google Scholar 

  • Zheng, X., Chen, Y., Groisser, D., & Wilson, D. (2005). Some new results on non-rigid correspondence and classification of curves. In EMMCVPR (pp. 473–489).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Washington Mio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mio, W., Bowers, J.C. & Liu, X. Shape of Elastic Strings in Euclidean Space. Int J Comput Vis 82, 96–112 (2009). https://doi.org/10.1007/s11263-008-0190-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-008-0190-0

Keywords

Navigation