Skip to main content
Log in

A Shape Representation with Elastic Quadratic Polynomials—Preservation of High Curvature Points under Noisy Conditions

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We present a new shape representation technique for a planar shape using overlapping quadratic splines. The technique refines the shape by iteratively updating each spline to reduce the cost associated with C 1 discontinuity. It consists of a series of affine commutative linear operators, producing a smooth bandpass frequency response. The primary purpose of the technique is to remove minute high-curvature points while preserving salient ones. We compare the performance of the technique against those that are based on either linear splines, cubic splines, or wavelets. We consider three criteria: sensitivity of detecting salient high-curvature points, Hausdorff distance between the representation and the original shape, and computation time. The results show that the proposed technique is highly effective in preserving salient high curvature points with a relatively small Hausdorff distance and a computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpert, B. (1993). A class of bases in l for the sparse representation of integral operators. SIAM Journal of Mathematical Analysis, 24, 246–262.

    Article  MATH  MathSciNet  Google Scholar 

  • Asada, H., & Brady, M. (1986). The curvature primal sketch. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(1), 2–14.

    Article  Google Scholar 

  • Attneave, F. (1954). Some information aspects of visual perception. Psychological Review, 61(3), 183–193.

    Article  Google Scholar 

  • Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4), 509–522.

    Article  Google Scholar 

  • Bengtsson, A., & Eklundh, J. (1991). Shape representation by multiscale contour approximation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(1), 85–93.

    Article  Google Scholar 

  • Bookstein, F. (1989). Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(6), 567–585.

    Article  MATH  Google Scholar 

  • Cham, T., & Cipolla, R. (1999). Automated b-spline curve representation incorporating mdl and error-minimizing control point insertion strategies. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(1), 49–53.

    Article  Google Scholar 

  • Charpiat, G., Faugeras, O., & Keriven, R. (2005). Approximations of shape metrics and application to shape warping and empirical shape statistics. Foundations of Computational Mathematics, 5(1), 1–58.

    Article  MATH  MathSciNet  Google Scholar 

  • Chuang, G. C. H., & Kuo, C. C. J. (1996). Wavelet descriptor of planar curves: theory and applications. IEEE Transactions on Image Processing, 5(1), 56–70.

    Article  Google Scholar 

  • Cootes, T., Taylor, C., Cooper, D., & Graham, J. (1995). Active shape models: Their training and application. Computer Vision and Image Understanding, 61(1), 38–59.

    Article  Google Scholar 

  • Cremers, D., Tischhauser, F., Weickert, J., & Schnorr, C. (2002). Diffusion snakes: Introducing statistical shape knowledge into the Mumford-shah functional. International Journal of Computer Vision, 50(3), 295–313.

    Article  MATH  Google Scholar 

  • Dambreville, S., Rathi, Y., & Tannenbaum, A. (2008). A framework for image segmentation using shape models and kernel space shape priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(8), 1385–1399.

    Article  Google Scholar 

  • de Boor, C. (1978). A practical guide to splines. New York: Springer.

    MATH  Google Scholar 

  • Dessimoz, J. (1979). Curve smoothing for improved feature extraction from digitized pictures. Signal Processing, 1, 205–210.

    Article  Google Scholar 

  • Donoho, D. (1995). Denoising by soft-thresholding. IEEE Transactions on Information Theory, 41(3), 613–627.

    Article  MATH  MathSciNet  Google Scholar 

  • Elder, J. H., & Zucker, S. W. (1996). Computing contour closure. In Proc. 4th European conference on computer vision (pp. 399–412). Cambridge, UK.

  • Elder, J., & Zucker, S. (1998). Local scale control for edge detection and blur estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(7), 699–716.

    Article  Google Scholar 

  • Fuchs, H., Kedem, Z., & Uselton, S. (1977). Optimal surface reconstructions from planar contours. Communications of the ACM, 20(10), 693–702.

    Article  MATH  MathSciNet  Google Scholar 

  • Geronimo, J. S., Hardin, D. P., & Massopust, P. R. (1994). Fractal functions and wavelet expansions based on several scaling functions. Journal of Approximation Theory, 78, 373–401.

    Article  MATH  MathSciNet  Google Scholar 

  • Getz, N. H. (1992). http://www.inversioninc.com/wavelet.html.

  • Jang, B., & Chin, R. (1998). Morphological scale space for 2d shape smoothing. Computer Vision and Image Understanding, 70(2), 121–141.

    Article  MATH  Google Scholar 

  • Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of Computer Vision, 1(4), 321–331.

    Article  Google Scholar 

  • Kendall, D. (1984). Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of London Mathematical Society, 16, 81–121.

    Article  MATH  MathSciNet  Google Scholar 

  • Kilian, M., Mitra, N. J., & Pottmann, H. (2007). Geometric modeling in shape space. ACM Transactions on Graphics, 26(3), 64.

    Article  Google Scholar 

  • Kimia, B., & Siddiqi, K. (1996). Geometric heat-equation and nonlinear diffusion of shapes and images. Computer Vision and Image Understanding, 64(3), 305–322.

    Article  Google Scholar 

  • Kubota, T. (2003). Contextual and non-combinatorial approach to feature extraction. In A. Rangarajan, M. A. T. Figueiredo, & J. Zerubia (Eds.), 4th international workshop on energy minimization methods in computer vision and pattern recognition (pp. 467–482). Lisbon, Portugal.

  • Laurentini, A. (1994). The visual hull concept for silhouette-based image understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(2), 150–162.

    Article  Google Scholar 

  • Lindeberg, T. (1998). Feature detection with automatic scale selection. International Journal of Computer Vision, 30(2), 79–116.

    Article  Google Scholar 

  • Lu, F., & Milios, E. E. (1994). Optimal spline fitting to planar shape. Signal Processing, 37, 129–140.

    Article  Google Scholar 

  • Marr, D. (1982). Vision. San Francisco: Freeman.

    Google Scholar 

  • Michor, P., & Mumford, D. (2006). Riemannian geometries on spaces of plane curves. Journal of European Mathematical Society, 8, 1–48.

    Article  MATH  MathSciNet  Google Scholar 

  • Mio, W., Srivastava, A., & Joshi, S. (2007). On shape of plane elastic curves. International Journal of Computer Vision, 73(3), 307–324.

    Article  Google Scholar 

  • Mokhtarian, F., & Mackworth, A. (1986). Scale based description and recognition of planar curves and two-dimensional shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(1), 34–43.

    Article  Google Scholar 

  • Mokhtarian, F., Abbasi, S., & Kittler, J. (1996). Efficient and robust retrieval by shape content through curvature scale space. In Proc. international workshop on image databases and multimedia search (pp. 35–42). Amsterdam, Netherlands.

  • Nonato, L. G., Cuadros-Vargas, A. J., Minghim, R., & Oliveira, M. C. F. D. (2005). Beta-connection: Generating a family of models from planar cross sections. ACM Transactions on Graphics, 24(4), 1239–1258.

    Article  Google Scholar 

  • Paglieroni, D. W., & Jain, A. K. (1988). Control point transforms for shape representation and measurement. Computer Vision, Graphics and Image Processing, 42, 87–111.

    Article  Google Scholar 

  • Precioso, F., Barlaud, M., Blu, T., & Unser, M. (2005). Robust real-time segmentation of images and videos using a smooth-spline snake-based algorithm. IEEE Transaction on Image Processing, 14(7), 910–924.

    Article  Google Scholar 

  • Rattarangsi, A., & Chin, R. (1992). Scale-based detection of corners of planar curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(4), 430–449.

    Article  Google Scholar 

  • Richardson, T., & Wang, S. (2006). Open-curve shape correspondence without endpoint correspondence. In Proc. international conference on medical image computing and computer assisted intervention (MICCAI) (Vol. I, pp. 17–24). Copenhagen, Denmark.

  • Sebastian, T., Klein, P., & Kimia, B. (2003). On aligning curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(1), 116–124.

    Article  Google Scholar 

  • Sharon, E., Brandt, A., & Basri, R. (2000). Completion energies and scale. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(10), 1117–1131.

    Article  Google Scholar 

  • Sundaramoorthi, G., Yezzi, A. Jr., & Mennucci, A. (2007). Sobolev active contours. International Journal of Computer Vision, 73(3), 345–366.

    Article  Google Scholar 

  • Teh, C., & Chin, R. (1989). On the detection of dominant points on digital curve. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(8), 859–872.

    Article  Google Scholar 

  • Wang, S., Kubota, T., & Richardson, T. (2004). Shape correspondence through landmark sliding (pp. I: 143–150).

  • Wang, S., Kubota, T., Siskind, J., & Wang, J. (2005). Salient closed boundary extraction with ratio contour. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(4), 546–561.

    Article  Google Scholar 

  • Witkin, A. (1983). Scale-space filtering. In Proc. 8th int’l joint conf. artificial intelligence (pp. 1019–1022).

  • Younes, L. (1998). Computable elastic distances between shapes. SIAM Journal of Applied Mathematics, 58, 565–586.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiro Kubota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubota, T. A Shape Representation with Elastic Quadratic Polynomials—Preservation of High Curvature Points under Noisy Conditions. Int J Comput Vis 82, 133–155 (2009). https://doi.org/10.1007/s11263-008-0192-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-008-0192-y

Keywords

Navigation