Skip to main content
Log in

Study of a Robust Feature: The Pointwise Lipschitz Regularity

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

The aim of this paper is to highlight the relevance in computer vision of the pointwise Lipschitz regularity α∈ℝ. The regularity α gives a measure of the local regularity of the intensity function associated to an image. Known wavelet methods provide an efficient computation of α at contour points of the image. From a theoretical point of view, we study the effect of geometric deformations and other specific transformations applied to the image, showing invariance properties. From a practical point of view, we assess the robustness of the regularity α when the image undergoes various transformations. The results we obtain show the Lipschitz regularity α is a suitable feature for applications in computer vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arneodo, A., Bacry, E., & Muzy, J. F. (1993). Singularity spectrum of fractal signals: exact results. Journal of Statistical Physics, 70, 635–674.

    Article  MathSciNet  MATH  Google Scholar 

  • Arneodo, A., Bacry, E., Jaffard, S., & Muzy, J. F. (1997). Oscillating singularities on cantor sets: a grand-canonical multifractal formalism. Journal of Statistical Physics, 87, 179–209.

    Article  MathSciNet  MATH  Google Scholar 

  • Arneodo, A., Bacry, E., Jaffard, S., & Muzy, J. F. (1998). Singularity spectrum of multifractal functions involving oscillating singularities. Journal of Fourier Analysis and Applications, 4(2), 159–174.

    Article  MathSciNet  MATH  Google Scholar 

  • Arneodo, A., Bacry, E., Jaffard, S., & Muzy, J. F. (1999). Oscillating singularities and fractal functions. Spline functions and the theory of wavelets. CRM Proceedings and Lecture Notes, 18, 315–329.

    MathSciNet  Google Scholar 

  • Baumberg, A. (2000). Reliable feature matching across widely separated views. In Computer vision and pattern recognition (pp. 774–781).

  • Benassi, A., Cohen, S., Istas, J., & Jaffard, S. (1998). Identification of filtered white noises. Stochastic Processes and Their Applications, 75(1), 31–49.

    Article  MathSciNet  MATH  Google Scholar 

  • Bigot, J. (2003). Automatic landmark registration of 1d curves. In Recent advances and trends in nonparametric statistics (pp. 479–496). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Brown, M., & Lowe, D. (2007). Automatic panoramic image stitching using invariant features. International Journal of Computer Vision, 14(1), 59–73.

    Article  Google Scholar 

  • Candes, E., & Donoho, D. L. (2000). New tight frames of curvelets and optimal representations of objects with piecewise-c2 singularities. Communications on Pure and Applied Mathematics, 57, 219–266.

    Article  MathSciNet  Google Scholar 

  • Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6), 679–698.

    Article  Google Scholar 

  • Damerval, C., & Meignen, S. (2007). Blob detection with wavelet maxima lines. IEEE Signal Processing Letters, 14(1), 39–42.

    Article  Google Scholar 

  • Deguy, S., Debain, C., & Benassi, A. (2000). Classification of texture images using multi-scale statistical estimators of fractal parameters. In British machine vision conference.

  • Florack, L., ter Haar Romeny, B., Koenderink, J., & Viergever, M. (1993). Cartesian differential invariants in scale-space. Journal of Mathematical Imaging and Vision, 3(4), 327–348.

    Article  MathSciNet  Google Scholar 

  • Iijima, T. (1962). Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bulletin of the Electrotechnical Laboratory, 26, 368–388.

    Google Scholar 

  • Jaffard, S., & Meyer, Y. (1996). Wavelet methods for pointwise regularity and local oscillations of functions. Providence: American Mathematical Society.

    Google Scholar 

  • Kadir, T., Zisserman, A., & Brady, M. (2004). An affine invariant salient region detector. In European conference on computer vision (pp. 404–416).

  • Kaplan, L. M., & Kuo, C. C. (1995a). Fast image synthesis using an extended self-similar model. IEEE ICASSP-95, 4, 575–578.

    Google Scholar 

  • Kaplan, L. M., & Kuo, C. C. (1995b). Texture roughness analysis and synthesis via extended self-similar model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(11), 1043–1056.

    Article  Google Scholar 

  • Ko, H., & Lee, J. (2008). Gradient-based local affine invariant feature extraction for mobile robot localization in indoor environments. Pattern Recognition Letters, 29, 1934–1940.

    Google Scholar 

  • Koenderink, J. J., & Doorn, A. V. (1987). Representation of local geometry in the visual system. Biological Cybernetics, 55, 367–375.

    Article  MathSciNet  MATH  Google Scholar 

  • Lehmann, E. L. (1997). Testing statistical hypotheses. Berlin: Springer.

    MATH  Google Scholar 

  • Lindeberg, T. (1994). Scale space theory in computer vision. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Lindeberg, T. (1998). Feature detection with automatic scale selection. International Journal of Computer Vision, 30(2), 77–116.

    Google Scholar 

  • Lindeberg, T., & Garding, J. (1997). Shape-adapted smoothing in estimation of 3-d shape cues from affine deformations of local 2-d brightness structure. Image and Vision Computing, 15(6), 415–434.

    Article  Google Scholar 

  • Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Mallat, S. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 674–693.

    Article  MATH  Google Scholar 

  • Mallat, S. (1998). A wavelet tour of signal processing. San Diego: Academic Press.

    MATH  Google Scholar 

  • Mallat, S., & Hwang, W. L. (1992). Singularity detection and processing with wavelets. IEEE Transactions on Information Theory, 38(2), 617–643.

    Article  MathSciNet  Google Scholar 

  • Mallat, S., & Peyré, G. (2007). A review of bandlet methods for geometrical image representation. Numerical Algorithms, 44(3), 205–234.

    Article  MathSciNet  MATH  Google Scholar 

  • Mallat, S., & Zhong, S. (1992). Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(7), 710–732.

    Article  Google Scholar 

  • Matas, J., Chum, O., Urban, M., & Pajdla, T. (2002). Robust wide baseline stereo from maximally stable extremal regions. In British machine vision conference (pp. 384–393).

  • Mikolajczyk, K., & Schmid, C. (2004). Scale and affine invariant interest point detectors. International Journal of Computer Vision, 60(1), 63–86.

    Article  Google Scholar 

  • Mikolajczyk, K., & Schmid, C. (2005). A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10), 1615–1630.

    Article  Google Scholar 

  • Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., & Gool, L. V. (2005). A comparison of affine region detectors. International Journal of Computer Vision, 62(1), 43–72.

    Article  Google Scholar 

  • Rudin, W. (1991). Functional analysis. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Tuytelaars, T., & Gool, L. V. (2004). Matching widely separated views based on affine invariant regions. International Journal of Computer Vision, 59(1), 61–85.

    Article  Google Scholar 

  • Witkin, A. (1983). Scale-space filtering. In Proceedings of the eight international joint conference on artificial intelligence.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Damerval.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damerval, C., Meignen, S. Study of a Robust Feature: The Pointwise Lipschitz Regularity. Int J Comput Vis 88, 363–381 (2010). https://doi.org/10.1007/s11263-009-0310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-009-0310-5

Navigation