Skip to main content
Log in

Rejecting Mismatches by Correspondence Function

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

A novel method ICF (Identifying point correspondences by Correspondence Function) is proposed for rejecting mismatches from given putative point correspondences. By analyzing the connotation of homography, we introduce a novel concept of correspondence function for two images of a general 3D scene, which captures the relationships between corresponding points by mapping a point in one image to its corresponding point in another. Since the correspondence functions are unknown in real applications, we also study how to estimate them from given putative correspondences, and propose an algorithm IECF (Iteratively Estimate Correspondence Function) based on diagnostic technique and SVM. Then, the proposed ICF method is able to reject the mismatches by checking whether they are consistent with the estimated correspondence functions. Extensive experiments on real images demonstrate the excellent performance of our proposed method. In addition, the ICF is a general method for rejecting mismatches, and it is applicable to images of rigid objects or images of non-rigid objects with unknown deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnett, V., & Lewis, T. (1994). Outliers in statistical data (3rd ed.). New York: Wiley.

    MATH  Google Scholar 

  • Bartoli, A. (2008). Maximizing the predictivity of smooth deformable image warps through cross-validation. Journal of Mathematical Imaging and Vision, 31(2–3), 133–145. Special issue: tribute to Peter Johansen.

    Article  MathSciNet  Google Scholar 

  • Chang, C. C., & Lin, C. J. (2001). LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

  • Deriche, R., Zhang, Z., Luong, Q.-T., & Faugeras, O. (1994). Robust recovery of the epipolar geometry for an uncalibrated stereo rig. In J.-O. Eklundh (Ed.), Lecture notes in computer science : Vol. 800. Proceedings of the 3rd European conference on computer vision, Stockholm, Sweden (Vol. 1, pp. 567–576). Berlin: Springer.

    Google Scholar 

  • Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with application to image analysis and automated cartography. Communication Association and Computing Machine, 24(6), 381–395.

    MathSciNet  Google Scholar 

  • Gay-Bellile, V., Bartoli, A., & Sayd, P. (2007). Direct estimation of non-rigid registrations with image-based self-occlusion reasoning. In 2007 IEEE 11th international conference on computer vision (pp. 1–6).

  • Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Huber, P. J. (1981). Robust statistics. New York: Wiley.

    Book  MATH  Google Scholar 

  • Li, H. (2007). A practical algorithm for L-infinity triangulation with outliers. In Proceedings of IEEE conference on computer vision and pattern recognition (pp. 1–8).

  • Liang, Y. Z., & Kvalheim, O. M. (1996). Robust methods for multivariate analysis-a tutorial review. Chemometrics and Intelligent Laboratory Systems, 32, 1–10.

    Article  MATH  Google Scholar 

  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Luong, Q. T. (1992). Matrice fondamentale et calibration visuelle sur l’environnement: vers use plus grande autonomie des systemes robotiques. PhD thesis. Paris University.

  • Nister, D. (2005). Preemptive RANSAC for live structure and motion estimation. Machine Vision and Applications, 16(5), 321–329.

    Article  Google Scholar 

  • Olsen, S. I. (1992). Epipolar line estimation. In Proc. of the 2nd European conf. on computer vision (pp. 307–311).

  • Rahmatullah Imon, A. H. M. (2005). Identifying multiple influential observations in linear regression. Journal of Applied statistics, 32(9), 929–946.

    Article  MATH  MathSciNet  Google Scholar 

  • Reza, H., & Alireza, B. H. (2007). Fast estimation of epipolar geometry using high breakdown M-estimators. In Proceedings of the 9th biennial conference of the Australian pattern recognition society on digital image computing techniques and applications (pp. 159–166).

  • Rousseeuw, P. J. (1984). Least median of squares regression. Journal of the American Statistical Association, 79, 871–880.

    Article  MATH  MathSciNet  Google Scholar 

  • Rousseeuw, P. J., & Leroy, A. M. (1987). Robust regression and outlier detection. New York: Wiley.

    Book  MATH  Google Scholar 

  • Sim, K., & Hartley, R. (2006). Removing outliers using the L norm. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (Vol. 1, pp. 485–494).

  • Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222.

    Article  MathSciNet  Google Scholar 

  • Smola, A. J., Schölkopf, B., & Müller, K. R. (1998). General cost functions for support vector regression. In T. Downs, M. Frean, M. Gallagher (Eds.), Proc. of the ninth Australian conf. on neural networks (pp. 79–83). Brisbane, Australia, University of Queensland.

  • Sonka, M., Hlavac, V., & Boyle, R. (1999). Image processing, analysis, and machine vision (2nd ed.). Pacific Grove: Brooks/Cole.

    Google Scholar 

  • Subbarao, R., & Meer, P. (2006). Beyond RANSAC: user independent robust regression. In Workshop on 25 Years of RANSAC (in conjunction with CVPR06) (pp. 101–108). New York, NY.

  • Tico, M., Rusu, C., & Kuosmanen, P. (1999). A geometric invariant representation for the identification of corresponding points. In Proceedings of international conference on image processing (Vol. 2, pp. 462–466).

  • Tordoff, B., & Murray, D. W. (2005). Guided-MLESAC: faster image transform estimation by using matching priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10), 1523–1535.

    Article  Google Scholar 

  • Torr, P. H. S. (1995). Motion segmentation and outlier detection. Ph.D. Thesis. Department of Engineering Science, University of Oxford.

  • Torr, P. H. S., & Murray, D. W. (1993). Outlier detection and motion segmentation. In P. Schenker (Ed.), SPIE: Vol. 2059. Sensor fusion VI. Boston (pp. 432–443).

  • Torr, P. H. S., & Zisserman, A. (1997). Robust parametrization and computation of the trifocal tensor. Image and Vision Computing, 15(8), 591–605.

    Article  Google Scholar 

  • Torr, P. H. S., & Zisserman, A. (2000). MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding, 78, 138–156.

    Article  Google Scholar 

  • Vapnik, V. N. (1998). Statistical learning theory. New York: Wiley.

    MATH  Google Scholar 

  • Yang, H. Q., Huang, K. Z., Chan, L. W., King, I., & Lyu, M. R. (2004). Outliers treatment in support vector regression for financial time series prediction. In Lecture notes in computer science : Vol. 3316. Neural information processing (pp. 1260–1265). Berlin: Springer.

    Google Scholar 

  • Zhang, Z. (1997). Parameter estimation techniques: a tutorial with application to conic fitting. Image and Vision Computing, 15(1), 59–76.

    Article  Google Scholar 

  • Zhang, Z. (1998). Determining the epipolar geometry and its uncertainty: a review. International Journal of Computer Vision, 27(2), 161–195.

    Article  Google Scholar 

  • Zhang, W., & Kosecka, J. (2006). A new inlier identification scheme for robust estimation problems. In G.S. Sukhatme, S. Schaal, W. Burgard, D. Fox (Eds.), Proceedings of robotics: science and systems 2006. Robotics: science and systems II (pp. 16–19).

  • Zhang, Z., Deriche, R., Faugeras, O., & Luong, Q. (1995). A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artificial Intelligent, 78(1–2), 87–119.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangru Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Hu, Z. Rejecting Mismatches by Correspondence Function. Int J Comput Vis 89, 1–17 (2010). https://doi.org/10.1007/s11263-010-0318-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-010-0318-x

Keywords

Navigation