Abstract
Symmetry detection and analysis in 3D images is a fundamental task in a gamut of scientific fields such as computer vision, medical imaging and pattern recognition to name a few. In this work, we present a computational approach to 3D symmetry detection and analysis. Our analysis is conducted in the Fourier domain using the pseudo-polar Fourier transform. The pseudo-polar representation enables to efficiently and accurately analyze angular volumetric properties such as rotational symmetries. Our algorithm is based on the analysis of the angular correspondence rate of the given volume and its rotated and rotated-inverted replicas in their pseudo-polar representations. We also derive a novel rigorous analysis of the inherent constraints of 3D symmetries via groups-theory based analysis. Thus, our algorithm starts by detecting the rotational symmetry group of a given volume, and the rigorous analysis results pave the way to detect the rest of the symmetries. The complexity of the algorithm is O(N 3log (N)), where N×N×N is the volumetric size in each direction. This complexity is independent of the number of the detected symmetries. We experimentally verified our approach by applying it to synthetic as well as real 3D objects.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Averbuch, A., & Shkolnisky, Y. (2003). 3D Fourier based discrete radon transform. Applied and Computational Harmonic Analysis, 15, 33–69.
Bokeloh, M., Berner, A., Wand, M., Seidel, H.-P., & Schilling, A. (2009). Symmetry detection using line features. Computer Graphics Forum (Proc. EUROGRAPHICS), 28(2), 697–706.
Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2006). Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proceedings of the National Academy of Science, 103(5), 1168–1172.
Bronstein, M. M., Raviv, D., Bronstein, A. M., & Kimmel, R. (2009). Full and partial symmetries of non-rigid shapes. IJCV.
Chen, S. (2001). Extraction of local mirror-symmetric feature by odd-even decomposition. Proceedings International Conference on Image Processing, 3, 756–759.
Chertok, M., & Keller, Y. (2009). Spectral symmetry analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence (in press). http://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.121.
Cheung, W., & Hamarneh, G. (2007). N-sift: N-dimensional scale invariant feature transform for matching medical images. In 4th IEEE international symposium on biomedical imaging: from nano to macro, 2007. ISBI 2007 (pp. 720–723).
Cornelius, H., Perdoch, M., Matas, J., & Loy, G. (2007). Efficient symmetry detection using local affine frames. In B. K. Ersbøll, & K. S. Pedersen (Eds.), SCIA 2007: Proceedings of 15th Scandinavian conference on image analysis. Lecture notes in computer science (Vol. 4522, pp. 152–161). Berlin: Springer.
Derrode, S., & Ghorbel, F. (2004). Shape analysis and symmetry detection in gray-level objects using the analytical Fourier-Mellin representation. Signal Processing, 84(1), 25–39.
Eckmann Jeger, B., & Jeger, M. (1967). Vector geometry & linear algebra. New York: John Wiley & Sons.
Hays, J. H., Leordeanu, M., Efros, A. A., & Liu, Y. (2006). Discovering texture regularity via higher-order matching. In 9th European conference on computer vision (pp. 522–535).
Holden, A. (1971). Shapes, space and symmetry. New York: Columbia University Press.
Kazhdan, M. M., Chazelle, B., Dobkin, D. P., Finkelstein, A., & Funkhouser, T. A. (2002). A reflective symmetry descriptor. In ECCV ’02: Proceedings of the 7th European conference on computer vision-part II (pp. 642–656). Berlin: Springer-Verlag.
Keller, Y., & Shkolnisky, Y. (2006). A signal processing approach to symmetry detection. IEEE Transactions on Image Processing, 15(6), 2198–2207.
Keller, Y., Averbuch, A., & Israeli, M. (2005a). Pseudo-polar based estimation of large translations rotations and scalings in images. IEEE Transactions on Image Processing, 14(1), 12–22.
Keller, Y., Shkolnisky, Y., & Averbuch, A. (2005b). The angular difference function and its application to image registration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6), 969–976.
Keller, Y., Shkolnisky, Y., & Averbuch, A. (2006). Algebraically accurate 3-D rigid registration. IEEE Transactions on Signal Processing, 54(11), 4323–4331.
Kim, W., & Kim, Y. (1999). Robust rotation angle estimator. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(8), 768–773.
Kiryati, N., & Gofman, Y. (1998). Detecting symmetry in grey level images: the global optimization approach. International Journal of Computer Vision, 29(1), 29–45.
Lowe, D. (2003). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 20, 91–110.
Loy, G., & Eklundh, J.-O. (2006). Detecting symmetry and symmetric constellations of features. In Proc. European conf. comp. vision (ECCV’06). LNCS (Vol. 3951, pp. 508–521). Berlin: Springer.
Lucchese, L. (2004). Frequency domain classification of cyclic and dihedral symmetries of finite 2-D patterns. Pattern Recognition, 37, 2263–2280.
Martinet, A., Soler, C., Holzschuch, N., & Sillion, F. (2006). Accurate detection of symmetries in 3d shapes. ACM Transactions on Graphics, 25(2), 439–464.
Miller, W. (1972). Symmetry groups and their applications. London: Academic Press.
Mitra, N. J., Guibas, L., & Pauly, M. (2006). Partial and approximate symmetry detection for 3D geometry. ACM Transactions on Graphics, 25, 560–568.
Ni, D., Chui, Y. P., Qu, Y., Yang, X., Qin, J., Wong, T.-T., Ho, S. S. H., & Heng, P. A. (2009). Reconstruction of volumetric ultrasound panorama based on improved 3D sift. Computerized Medical Imaging and Graphics, 33(7), 559–566.
Ovsjanikov, M., Sun, J., & Guibas, L. J. (2008). Global intrinsic symmetries of shapes. Computer Graphics Forum, 27(5), 1341–1348.
Pauly, M., Mitra, N. J., Wallner, J., Pottmann, H., & Guibas, L. (2008). Discovering structural regularity in 3D geometry. ACM Transactions on Graphics, 27(3):1–11. 43.
Prasad, V. S. N., & Davis, L. S. (2005). Detecting rotational symmetries. In Tenth IEEE international conference on computer vision, 2005. ICCV 2005 (Vol. 2, pp. 954–961), 17–21 Oct. 2005.
Prasad, V. S. N., & Yegnanarayana, B. (2004). Finding axes of symmetry from potential fields. IEEE Transactions on Image Processing, 13(12), 1559–1566.
Raviv, D., Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2007). Symmetries of non-rigid shapes. In IEEE 11th international conference on computer vision, 2007. ICCV 2007 (pp. 1–7).
Reisfeld, D., Wolfson, H., & Yeshurun, Y. (1995). Context free attentional operators: the generalized symmetry transform. International Journal of Computer Vision, 14, 119–130.
Shen, D., Ip, H., & Teoh, E. K. (2001). Robust detection of skewed symmetries by combining local and semi-local affine invariants. Pattern Recognition, 34(7), 1417–1428.
Stoy, G. A., Neumann, P. M., & Thompson, E. C. (1994). Groups and geometry. Oxford: Oxford University Press.
Thompson, D. W. (1961). On growth and form. Cambridge University Press, Cambridge.
Trucco, E., & Verri, A. (1998). Introductory techniques for 3-D computer vision. New Jersey: Prentice-Hall (pp. 333–334).
Weyl, H. (1952). Symmetry. Princeton: Princeton University Press.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bermanis, A., Averbuch, A. & Keller, Y. 3-D Symmetry Detection and Analysis Using the Pseudo-polar Fourier Transform. Int J Comput Vis 90, 166–182 (2010). https://doi.org/10.1007/s11263-010-0356-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11263-010-0356-4