Skip to main content
Log in

An Elasticity-Based Covariance Analysis of Shapes

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We introduce the covariance of a number of given shapes if they are interpreted as boundary contours of elastic objects. Based on the notion of nonlinear elastic deformations from one shape to another, a suitable linearization of geometric shape variations is introduced. Once such a linearization is available, a principal component analysis can be investigated. This requires the definition of a covariance metric—an inner product on linearized shape variations. The resulting covariance operator robustly captures strongly nonlinear geometric variations in a physically meaningful way and allows to extract the dominant modes of shape variation. The underlying elasticity concept represents an alternative to Riemannian shape statistics. In this paper we compare a standard L 2-type covariance metric with a metric based on the Hessian of the nonlinear elastic energy. Furthermore, we explore the dependence of the principal component analysis on the type of the underlying nonlinear elasticity. For the built-in pairwise elastic registration, a relaxed model formulation is employed which allows for a non-exact matching. Shape contours are approximated by single well phase fields, which enables an extension of the method to a covariance analysis of image morphologies. The model is implemented with multilinear finite elements embedded in a multi-scale approach. The characteristics of the approach are demonstrated on a number of illustrative and real world examples in 2D and 3D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrosio, L., & Tortorelli, V. M. (1990). Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Communications on Pure and Applied Mathematics, 43, 999–1036.

    Article  MathSciNet  MATH  Google Scholar 

  • Ambrosio, L., & Tortorelli, V. M. (1992). On the approximation of free discontinuity problems. Bollettino dell’Unione Matematica Italiana, Sezione B, 6(7), 105–123.

    MathSciNet  MATH  Google Scholar 

  • Ball, J. M. (1981). Global invertibility of Sobolev functions and the interpenetration of matter. Proceedings of the Royal Society of Edinburgh A, 88, 315–328.

    MATH  Google Scholar 

  • Bhatia, K. K., Hajnal, J. V., Puri, B. K., Edwards, A. D., & Rueckert, D. (2004). Consistent groupwise non-rigid registration for atlas construction. In IEEE international symposium on biomedical imaging: nano to macro (Vol. 1, pp. 908–911).

  • Bhatia, K. K., Hajnal, J. V., Hammers, A., & Rueckert, D. (2007). Similarity metrics for groupwise non-rigid registration. In N. Ayache, S. Ourselin, & A. Maeder (Eds.), LNCS : Vol. 4792. Medical image computing and computer–assisted intervention, MICCAI 2007 (pp. 544–552). Berlin: Springer.

    Chapter  Google Scholar 

  • Bronstein, A., Bronstein, M., & Kimmel, R. (2008). Numerical geometry of non-rigid shapes. Monographs in computer science. Berlin: Springer.

    MATH  Google Scholar 

  • Chalmond, B., & Girard, S. C. (1999). Nonlinear modeling of scattered multivariate data and its application to shape change. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5), 422–432.

    Article  Google Scholar 

  • Chan, T. F., & Vese, L. A. (2001a). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277.

    Article  MATH  Google Scholar 

  • Chan, T. F., & Vese, L. A. (2001b). A level set algorithm for minimizing the Mumford-Shah functional in image processing. In IEEE/Computer society proceedings of the 1st IEEE workshop on variational and level set methods in computer vision (pp. 161–168).

  • Charpiat, G., Faugeras, O., & Keriven, R. (2005). Approximations of shape metrics and application to shape warping and empirical shape statistics. Foundations of Computational Mathematics, 5(1), 1–58.

    Article  MathSciNet  MATH  Google Scholar 

  • Charpiat, G., Faugeras, O., Keriven, R., & Maurel, P. (2006). Distance-based shape statistics. In Acoustics, speech and signal processing, 2006 (ICASSP 2006) (Vol. 5).

  • Chipot, M., & Evans, L. C. (1986). Linearization at infinity and Lipschitz estimates in the calculus of variations. Proceedings of the Royal Society of Edinburgh A, 102(3–4), 291–303.

    MathSciNet  MATH  Google Scholar 

  • Ciarlet, P. G. (1988). Three-dimensional elasticity. Amsterdam: Elsevier Science.

    MATH  Google Scholar 

  • Cootes, T. F., Taylor, C. J., Cooper, D. H., & Graham, J. (1995). Active shape models—their training and application. Computer Vision and Image Understanding, 61(1), 38–59.

    Article  Google Scholar 

  • Cremers, D., Kohlberger, T., & Schnörr, C. (2003). Shape statistics in kernel space for variational image segmentation. Pattern Recognition, 36, 1929–1943.

    Article  MATH  Google Scholar 

  • Dal Maso, G., Morel, J. M., & Solimini, S. (1992). A variational method in image segmentation: existence and approximation results. Acta Mathematica, 168(1–2), 89–151.

    Article  MathSciNet  MATH  Google Scholar 

  • Dambreville, S., Rathi, Y., & Tannenbaum, A. (2006). A shape-based approach to robust image segmentation. In A. Campilho, & M. Kamel (Eds.), LNCS : Vol. 4141. IEEE computer society conference on computer vision and pattern recognition (pp. 173–183). Berlin: Springer.

    Google Scholar 

  • De Giorgi, E., Carriero, M., & Leaci, A. (1989). Existence theorem for a minimum problem with free discontinuity set. Archive for Rational Mechanics and Analysis, 108, 195–218.

    Article  MathSciNet  MATH  Google Scholar 

  • Faugeras, O., Adde, G., Charpiat, G., Chefd’Hotel, C., Clerc, M., Deneux, T., Deriche, R., Hermosillo, G., Keriven, R., Kornprobst, P., Kybic, J., Lenglet, C., Lopez-Perez, L., Papadopoulo, T., Pons, J.-P., Segonne, F., Thirion, B., Tschumperlé, D., Viéville, T., & Wotawa, N. (2004). Variational, geometric, and statistical methods for modeling brain anatomy and function. NeuroImage, 23, S46–S55.

    Article  Google Scholar 

  • Fletcher, P. T., Lu, C., & Joshi, S. (2003). Statistics of shape via principal geodesic analysis on Lie groups. In IEEE computer society conference on computer vision and pattern recognition CVPR (Vol. 1, pp. 95–101).

  • Fletcher, T., Venkatasubramanian, S., & Joshi, S. (2008). Robust statistics on Riemannian manifolds via the geometric median. In IEEE conference on computer vision and pattern recognition (CVPR).

  • Fuchs, M., Jüttler, B., Scherzer, O., & Yang, H. (2008). Shape metrics based on elastic deformations. Technical report, FWF, Joint Research Program of Industrial Geometry.

  • Fuchs, M., Jüttler, B., Scherzer, O., & Yang, H. (2009). Shape metrics based on elastic deformations. Journal of Mathematical Imaging and Vision, 35(1), 86–102.

    Article  MathSciNet  Google Scholar 

  • Hafner, B. J., Zachariah, S. G., & Sanders, J. E. (2000). Characterisation of three-dimensional anatomic shapes using principal components: application to the proximal tibia. Medical and Biological Engineering and Computing, 38, 9–16.

    Article  Google Scholar 

  • Joshi, S., Davis, B., Jomier, M., & Gerig, G. (2004). Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage, 23, 151–160. Supplement 1.

    Article  Google Scholar 

  • Karcher, H. (1977). Riemannian center of mass and mollifier smoothing. Communications on Pure and Applied Mathematics, 30(5), 509–541.

    Article  MathSciNet  MATH  Google Scholar 

  • Kendall, D.G. (1984). Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society, 16, 81–121.

    Article  MathSciNet  MATH  Google Scholar 

  • Kilian, M., Mitra, N. J., & Pottmann, H. (2007). Geometric modeling in shape space. In ACM transactions on graphics (Vol. 26, pp. 1–8).

  • Leventon, M. E., Grimson, W. E. L., & Faugeras, O. (2002). Statistical shape influence in geodesic active contours. In 5th IEEE EMBS international summer school on biomedical imaging, 2002.

  • Marsland, S., Twining, C. J., & Taylor, C. J. (2003). Groupwise non-rigid registration using polyharmonic clamped–plate splines. In R. E. Ellis, & T. M. Peters (Eds.), LNCS : Vol. 2879. Medical image computing and computer–assisted intervention, MICCAI (pp. 771–779). Berlin: Springer.

    Chapter  Google Scholar 

  • Mémoli, F., & Sapiro, G. (2005). A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics, 5, 313–347.

    Article  MathSciNet  MATH  Google Scholar 

  • Miller, M. I., & Younes, L. (2001). Group actions, homeomorphisms, and matching: a general framework. International Journal of Computer Vision, 41(1–2), 61–84.

    Article  MATH  Google Scholar 

  • Miller, M. I., Trouvé, A., & Younes, L. (2002). On the metrics and Euler-Lagrange equations of computational anatomy. Annual Review of Biomedical Engineering, 4, 375–405.

    Article  Google Scholar 

  • Morel, J.-M., & Solimini, S. (1988). Segmentation of images by variational methods: a constructive approach. Revista Matematica de la Universidad Complutense de Madrid, 1(1), 169–182.

    MathSciNet  MATH  Google Scholar 

  • Mumford, D., & Shah, J. (1989). Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure Applied Mathematics, 42, 577–685.

    Article  MathSciNet  MATH  Google Scholar 

  • Perperidis, D., Mohiaddin, R., & Rueckert, D. (2005). Construction of a 4d statistical atlas of the cardiac anatomy and its use in classification. In J. Duncan, & G. Gerig (Eds.), LNCS : Vol. 3750. Medical image computing and computer assisted intervention (pp. 402–410). Berlin: Springer.

    Chapter  Google Scholar 

  • Rathi, Y., Dambreville, S., & Tannenbaum, A. (2006). Comparative analysis of kernel methods for statistical shape learning. In R. R. Beichel, & M. Sonka (Eds.), LNCS : Vol. 4241. Computer vision approaches to medical image analysis (pp. 96–107). Berlin: Springer.

    Chapter  Google Scholar 

  • Rueckert, D., Frangi, A. F., & Schnabel, J. A. (2001). Automatic construction of 3D statistical deformation models using nonrigid registration. In W. Niessen, & M. Viergever (Eds.), LNCS : Vol. 2208. Medical image computing and computer–assisted intervention, MICCAI (pp. 77–84). Berlin: Springer.

    Google Scholar 

  • Rumpf, M., & Wirth, B. (2009a). An elasticity approach to principal modes of shape variation. In LNCS : Vol. 5567. Proceedings of the second international conference on scale space methods and variational methods in computer vision (SSVM 2009) (pp. 709–720). Berlin: Springer.

    Chapter  Google Scholar 

  • Rumpf, M., & Wirth, B. (2009b). A nonlinear elastic shape averaging approach. SIAM Journal on Imaging Sciences, 2(3), 800–833.

    Article  MathSciNet  MATH  Google Scholar 

  • Söhn, M., Birkner, M., Yan, D., & Alber, M. (2005). Modelling individual geometric variation based on dominant eigenmodes of organ deformation: implementation and evaluation. Physics in Medicine and Biology, 50, 5893–5908.

    Article  Google Scholar 

  • Srivastava, A., Jain, A., Joshi, S., & Kaziska, D. (2006). Statistical shape models using elastic-string representations. In P. J. Narayanan (Ed.), LNCS : Vol. 3851. Asian conference on computer vision (pp. 612–621). Berlin: Springer.

    Google Scholar 

  • Studholme, C. (2003). Simultaneous population based image alignment for template free spatial normalisation of brain anatomy. In J. C. Gee, J. B. A. Maintz, & M. W. Vannier (Eds.), LNCS : Vol. 2717. Second international workshop, WBIR, biomedical image registration (pp. 81–90). Berlin: Springer.

    Chapter  Google Scholar 

  • Wirth, B., Bar, L., Rumpf, M., & Sapiro, G. (2009). Geodesics in shape space via variational time discretization. In LNCS : Vol. 5681. Proceedings of the 7th international conference on energy minimization methods in computer vision and pattern recognition (EMMCVPR ’09) (pp. 288–302). Berlin: Springer.

    Chapter  Google Scholar 

  • Younes, L. (1998). Computable elastic distances between shapes. SIAM J. Appl. Math. 58(2), 565–586.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Wirth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rumpf, M., Wirth, B. An Elasticity-Based Covariance Analysis of Shapes. Int J Comput Vis 92, 281–295 (2011). https://doi.org/10.1007/s11263-010-0358-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-010-0358-2

Keywords

Navigation