Skip to main content
Log in

Highly Accurate Schemes for PDE-Based Morphology with General Convex Structuring Elements

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

The two fundamental operations in morphological image processing are dilation and erosion. These processes are defined via structuring elements. It is of practical interest to consider a variety of structuring element shapes. The realisation of dilation/erosion for convex structuring elements by use of partial differential equations (PDEs) allows for digital scalability and subpixel accuracy. However, numerical schemes suffer from blur by dissipative artifacts. In our paper we present a family of so-called flux-corrected transport (FCT) schemes that addresses this problem for arbitrary convex structuring elements. The main characteristics of the FCT-schemes are: (i) They keep edges very sharp during the morphological evolution process, and (ii) they feature a high degree of rotational invariance. We validate the FCT-scheme theoretically by proving consistency and stability. Numerical experiments with diamonds and ellipses as structuring elements show that FCT-schemes are superior to standard schemes in the field of PDE-based morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez, L., Guichard, F., Lions, P. L., & Morel, J. M. (1993). Axioms and fundamental equations in image processing. Archive for Rational Mechanics and Analysis, 123, 199–257.

    Article  MathSciNet  MATH  Google Scholar 

  • Arehart, A. B., Vincent, L., & Kimia, B. B. (1993). Mathematical morphology: The Hamilton–Jacobi connection. In Proc. fourth international conference on computer vision (pp. 215–219). Berlin: IEEE Computer Society Press.

    Google Scholar 

  • Banon, G. J. F., Barrera, J., Braga-Neto, U. D. M., & Hirata, N. S. T. (Eds.) (2007). Proceedings of the 8th international symposium on mathematical morphology : Vol. 1. Full Papers. São José dos Campos: Instituto Nacional de Pesquisas Espaciais (INPE). http://urlib.net/dpi.inpe.br/ismm@80/2007/05.29.15.58.

    Google Scholar 

  • Blum, H. (1973). Biological shape and visual science. Journal of Theoretical Biology, 38, 205–287.

    Article  Google Scholar 

  • Boris, J. P., & Book, D. L. (1973). Flux corrected transport. I. SHASTA, a fluid transport algorithm that works. Journal of Computational Physics, 11(1), 38–69.

    Article  Google Scholar 

  • Boris, J. P., & Book, D. L. (1976). Flux corrected transport. III. Minimal error FCT algorithms. Journal of Computational Physics, 20, 397–431.

    Article  Google Scholar 

  • Breuß, M., & Weickert, J. (2006). A shock-capturing algorithm for the differential equations of dilation and erosion. Journal of Mathematical Imaging and Vision, 25, 187–201.

    Article  MathSciNet  Google Scholar 

  • Breuß, M., & Welk, M. (2007). Analysis of staircasing in semidiscrete stabilised inverse linear diffusion algorithms. Journal of Computational and Applied Mathematics, 206, 520–533.

    Article  MathSciNet  MATH  Google Scholar 

  • Breuß, M., & Weickert, J. (2009). Highly accurate PDE-based morphology for general structuring elements. In X.-C. Tai et al. (Eds.), Lecture notes in computer science : Vol. 5567. Scale-space and variational methods in computer vision (pp. 758–769). Berlin: Springer.

    Chapter  Google Scholar 

  • Brockett, R. W., & Maragos, P. (1992). Evolution equations for continuous-scale morphology. In Proc. IEEE international conference on acoustics, speech and signal processing (Vol. 3, pp. 125–128). San Francisco, CA.

  • Butt, M. A., & Maragos, P. (1996). Comparison of multiscale morphology approaches: PDE implemented via curve evolution versus Chamfer distance transform. In P. Maragos, R. W. Schafer, & M. A. Butt (Eds.), Computational imaging and vision : Vol. 5. Mathematical morphology and its applications to image and signal processing (pp. 31–40). Dordrecht: Kluwer.

    Google Scholar 

  • Farin, G. (2002). Curves and surfaces for CADG. San Mateo: Morgan-Kaufmann.

    Google Scholar 

  • Gottlieb, S., & Shu, C.-W. (1998). Total variation diminishing Runge-Kutta schemes. Mathematics of Computation, 67(221), 73–85.

    Article  MathSciNet  MATH  Google Scholar 

  • Gottlieb, S., Shu, C.-W., & Tadmor, E. (2001). Strong stability-preserving high-order time discretisation methods. SIAM Review, 43(1), 89–112.

    Article  MathSciNet  MATH  Google Scholar 

  • Goutsias, J., Vincent, L., & Bloomberg, D. S. (Eds.), (2000). Computational imaging and vision : Vol18. Mathematical morphology and its applications to image and signal processing. Kluwer: Dordrecht.

    MATH  Google Scholar 

  • Hairer, E., Norsett, S., & Wanner, G. (1987). Springer series in computational mathematics : Vol. 8. Solving ordinary differential equations. I: Nonstiff problems. New York: Springer.

    MATH  Google Scholar 

  • Heijmans, H. J. A. M., & Roerdink, J. B. T. M. (Eds.), (1998). Computational imaging and vision : Vol. 12. Mathematical morphology and its applications to image and signal processing. Dordrecht: Kluwer.

    MATH  Google Scholar 

  • Kimia, B. B., Tannenbaum, A., & Zucker, S. W. (1995). Shapes, shocks, and deformations I: The components of two-dimensional shape and the reaction-diffusion space. International Journal of Computer Vision, 15, 189–224.

    Article  Google Scholar 

  • LeVeque, R. J. (2002). Finite volume methods for hyperbolic problems. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Matheron, G. (1967). Eléments pour une théorie des milieux poreux. Paris: Masson.

    Google Scholar 

  • Matheron, G. (1975). Random sets and integral geometry. New York: Wiley.

    MATH  Google Scholar 

  • Osher, S., & Fedkiw, R. P. (2002). Applied mathematical sciences : Vol. 153. Level set methods and dynamic implicit surfaces. New York: Springer.

    Google Scholar 

  • Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics, 79, 12–49.

    Article  MathSciNet  MATH  Google Scholar 

  • Pizarro, L., Burgeth, B., Breuß, M., & Weickert, J. (2009). A directional Rouy-Tourin scheme for adaptive matrix-valued morphology. In M. H. F. Wilkinson, & J. B. T. M. Roerdink (Eds.), Lecture notes in computer science : Vol. 5720. Proc. ninth international symposium on mathematical morphology (ISMM 2009) (pp. 250–260). Berlin: Springer.

    Google Scholar 

  • Ronse, C., Najman, L., & Decencière, E. (Eds.), (2005). Computational imaging and vision : Vol. 30. Mathematical morphology: 40 years on. Dordrecht: Springer.

    MATH  Google Scholar 

  • Rouy, E., & Tourin, A. (1992). A viscosity solutions approach to shape-from-shading. SIAM Journal on Numerical Analysis, 29, 867–884.

    Article  MathSciNet  MATH  Google Scholar 

  • Sapiro, G., Kimmel, R., Shaked, D., Kimia, B. B., & Bruckstein, A. M. (1993). Implementing continuous-scale morphology via curve evolution. Pattern Recognition, 26, 1363–1372.

    Article  Google Scholar 

  • Serra, J. (1967). Echantillonnage et estimation des phénomènes de transition minier. Ph.D. thesis, University of Nancy, France.

  • Serra, J. (1982). Image analysis and mathematical morphology (Vol. 1). London: Academic Press.

    MATH  Google Scholar 

  • Serra, J. (1988). Image analysis and mathematical morphology (Vol. 2). London: Academic Press.

    Google Scholar 

  • Sethian, J. A. (1999). Level set methods and fast marching methods (2nd ed.). Cambridge: Cambridge University Press. Paperback edition.

    MATH  Google Scholar 

  • Siddiqi, K., Kimia, B. B., & Shu, C. W. (1997). Geometric shock-capturing ENO schemes for subpixel interpolation, computation and curve evolution. Graphical Models and Image Processing, 59, 278–301.

    Article  Google Scholar 

  • Soille, P. (2003). Morphological image analysis (2nd ed.). Berlin: Springer.

    MATH  Google Scholar 

  • Tadmor, E. (1984). Numerical viscosity and the entropy condition for conservative difference schemes. Mathematics of Computation, 43, 369–381.

    Article  MathSciNet  MATH  Google Scholar 

  • Talbot, H., & Beare, R. (Eds.), (2002). Proc. sixth international symposium on mathematical morphology and its applications, Sydney, Australia. http://www.cmis.csiro.au/ismm2002/proceedings/.

  • van den Boomgaard, R. (1992). Mathematical morphology: Extensions towards computer vision. Ph.D. thesis, University of Amsterdam, The Netherlands.

  • van den Boomgaard, R. (1999). Numerical solution schemes for continuous-scale morphology. In M. Nielsen, P. Johansen, O. F. Olsen, & J. Weickert (Eds.), Lecture notes in computer science : Vol. 1682. Scale-space theories in computer vision (pp. 199–210). Berlin: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Breuß.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breuß, M., Weickert, J. Highly Accurate Schemes for PDE-Based Morphology with General Convex Structuring Elements. Int J Comput Vis 92, 132–145 (2011). https://doi.org/10.1007/s11263-010-0366-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-010-0366-2

Keywords

Navigation