Abstract
Most variational optic flow approaches just consist of three constituents: a data term, a smoothness term and a smoothness weight. In this paper, we present an approach that harmonises these three components. We start by developing an advanced data term that is robust under outliers and varying illumination conditions. This is achieved by using constraint normalisation, and an HSV colour representation with higher order constancy assumptions and a separate robust penalisation. Our novel anisotropic smoothness is designed to work complementary to the data term. To this end, it incorporates directional information from the data constraints to enable a filling-in of information solely in the direction where the data term gives no information, yielding an optimal complementary smoothing behaviour. This strategy is applied in the spatial as well as in the spatio-temporal domain. Finally, we propose a simple method for automatically determining the optimal smoothness weight. This method bases on a novel concept that we call “optimal prediction principle” (OPP). It states that the flow field obtained with the optimal smoothness weight allows for the best prediction of the next frames in the image sequence. The benefits of our “optic flow in harmony” (OFH) approach are demonstrated by an extensive experimental validation and by a competitive performance at the widely used Middlebury optic flow benchmark.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alvarez, L., Esclarín, J., Lefébure, M., & Sánchez, J. (1999). A PDE model for computing the optical flow. In Proc. XVI congreso de ecuaciones diferenciales y aplicaciones (pp. 1349–1356). Las Palmas de Gran Canaria, Spain.
Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., & Szeliski, R. (2009). A database and evaluation methodology for optical flow. Tech. Rep. MSR-TR-2009-179, Microsoft Research, Redmond, WA.
Barron, J. L., Fleet, D. J., & Beauchemin, S. S. (1994). Performance of optical flow techniques. International Journal of Computer Vision, 12(1), 43–77.
Bertero, M., Poggio, TA, & Torre, V. (1988). Ill-posed problems in early vision. Proceedings of the IEEE, 76(8), 869–889.
Bigün, J., Granlund, G. H., & Wiklund, J. (1991). Multidimensional orientation estimation with applications to texture analysis and optical flow. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(8), 775–790.
Black, M. J., & Anandan, P. (1996). The robust estimation of multiple motions: parametric and piecewise smooth flow fields. Computer Vision and Image Understanding, 63(1), 75–104.
Blake, A., & Zisserman, A. (1987). Visual reconstruction. Cambridge: MIT Press.
Brox, T., Bruhn, A., Papenberg, N., & Weickert, J. (2004). High accuracy optical flow estimation based on a theory for warping. In T. Pajdla & J. Matas (Eds.), Computer vision—ECCV 2004, Part IV. Lecture notes in computer science (Vol. 3024, pp. 25–36). Berlin: Springer.
Bruhn, A., & Weickert, J. (2005). Towards ultimate motion estimation: combining highest accuracy with real-time performance. In Proc. tenth international conference on computer vision (Vol. 1, pp. 749–755). Beijing: IEEE Computer Society Press.
Bruhn, A., Weickert, J., & Schnörr, C. (2005). Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. International Journal of Computer Vision, 61(3), 211–231.
Bruhn, A., Weickert, J., Kohlberger, T., & Schnörr, C. (2006). A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. International Journal of Computer Vision, 70(3), 257–277.
Charbonnier, P., Blanc-Féraud, L., Aubert, G., & Barlaud, M. (1994). Two deterministic half-quadratic regularization algorithms for computed imaging. In Proc. IEEE international conference on image processing (Vol. 2, pp. 168–172). Austin: IEEE Computer Society Press.
Cohen, I. (1993). Nonlinear variational method for optical flow computation. In Proc. eighth Scandinavian conference on image analysis (Vol. 1, pp. 523–530). Norway, Tromsø.
Coons, S. A. (1967). Surfaces for computer aided design of space forms (Tech. Rep. MIT/LCS/TR-41). Massachusetts Institute of Technology, Cambridge.
Elsgolc, L. E. (1962). Calculus of variations. London: Pergamon.
Fleet, D. J., & Jepson, A. D. (1990). Computation of component image velocity from local phase information. International Journal of Computer Vision, 5(1), 77–104.
Förstner, W., & Gülch, E. (1987). A fast operator for detection and precise location of distinct points, corners and centres of circular features. In Proc. ISPRS intercommission conference on fast processing of photogrammetric data (pp. 281–305). Interlaken, Switzerland.
Golland, P., & Bruckstein, A. M. (1997). Motion from color. Computer Vision and Image Understanding, 68(3), 346–362.
Grossauer, H., & Thoman, P. (2008). GPU-based multigrid: real-time performance in high resolution nonlinear image processing. In A. Gasteratos, M. Vincze, & J. K. Tsotsos (Eds.), Lecture notes in computer science: Vol. 5008. Computer vision systems (pp. 141–150). Berlin: Springer.
Gwosdek, P., Zimmer, H., Grewenig, S., Bruhn, A., & Weickert, J. (2010). A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. In Proc. 2010 ECCV workshop on computer vision with GPUs, Heraklion, Greece.
Horn, B., & Schunck, B. (1981). Determining optical flow. Artificial Intelligence, 17, 185–203.
Krajsek, K., & Mester, R. (2007). Bayesian model selection for optical flow estimation. In F. A. Hamprecht, C. Schnörr, & B. Jähne (Eds.), Pattern recognition. Lecture notes in computer science (pp. 142–151). Berlin: Springer.
Lai, S. H., & Vemuri, B. C. (1998). Reliable and efficient computation of optical flow. International Journal of Computer Vision, 29(2), 87–105.
Lei, C., & Yang, Y. H. (2009). Optical flow estimation on coarse-to-fine region-trees using discrete optimization. In Proc. 2009 IEEE international conference on computer vision. Kyoto: IEEE Computer Society Press.
Lucas, B., & Kanade, T. (1981). An iterative image registration technique with an application to stereo vision. In Proc. seventh international joint conference on artificial intelligence (pp. 674–679). Vancouver, Canada.
Mileva, Y., Bruhn, A., & Weickert, J. (2007). Illumination-robust variational optical flow with photometric invariants. In F. A. Hamprecht, C. Schnörr, & B. Jähne (Eds.), Pattern recognition. Lecture notes in computer science (pp. 152–162). Berlin: Springer.
Murray, D. W., & Buxton, B. F. (1987). Scene segmentation from visual motion using global optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(2), 220–228.
Nagel, H. H. (1990). Extending the ‘oriented smoothness constraint’ into the temporal domain and the estimation of derivatives of optical flow. In O. Faugeras (Ed.), Lecture notes in computer science: Vol. 427. Computer vision—ECCV ’90 (pp. 139–148). Berlin: Springer.
Nagel, H. H., & Enkelmann, W. (1986). An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 565–593.
Ng, L., & Solo, V. (1997). A data-driven method for choosing smoothing parameters in optical flow problems. In Proc. 1997 IEEE international conference on image processing (Vol. 3, pp. 360–363). Los Alamitos: IEEE Computer Society.
Perona, P., & Malik, J. (1990). Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 629–639.
Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D, 60, 259–268.
Schnörr, C. (1993). On functionals with greyvalue-controlled smoothness terms for determining optical flow. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(10), 1074–1079.
Schnörr, C. (1994). Segmentation of visual motion by minimizing convex non-quadratic functionals. In Proc. twelfth international conference on pattern recognition (Vol. A, pp. 661–663). Jerusalem: IEEE Computer Society Press.
Schoenemann, T., & Cremers, D. (2006). Near real-time motion segmentation using graph cuts. In K. Franke, K. R. Müller, B. Nickolay, & R. Schäfer (Eds.), Pattern recognition, Lecture notes in computer science (pp. 455–464). Berlin: Springer.
Shulman, D., & Hervé, J. (1989). Regularization of discontinuous flow fields. In Proc. workshop on visual motion (pp. 81–86). Irvine: IEEE Computer Society Press.
Simoncelli, E. P., Adelson, E. H., & Heeger, D. J. (1991). Probability distributions of optical flow. In Proc. 1991 IEEE computer society conference on computer vision and pattern recognition (pp. 310–315). Maui: IEEE Computer Society Press.
Sun, D., Roth, S., Lewis, J. P., & Black, M. J. (2008). Learning optical flow. In D. Forsyth, P. Torr, & A. Zisserman (Eds.), Computer vision—ECCV 2008, Part III, Lecture notes in computer science (pp. 83–97). Berlin: Springer.
Sun, D., Roth, S., & Black, M. J. (2010). Secrets of optical flow estimation and their principles. In Proc. 2010 IEEE computer society conference on computer vision and pattern recognition. San Francisco: IEEE Computer Society Press.
Sundaram, N., Brox, T., & Keutzer, K. (2010). Dense point trajectories by GPU-accelerated large displacement optical flow. In Lecture notes in computer science: Vol. 6311. Computer vision—ECCV 2010 (pp. 438–451). Berlin: Springer.
Tretiak, O., & Pastor, L. (1984). Velocity estimation from image sequences with second order differential operators. In Proc. seventh international conference on pattern recognition (pp. 16–19). Montreal, Canada.
van de Weijer, J., & Gevers, T. (2004). Robust optical flow from photometric invariants. In Proc. 2004 IEEE international conference on image processing (Vol. 3, pp. 1835–1838). Singapore: IEEE Signal Processing Society.
Wedel, A., Pock, T., Zach, C., Bischof, H., & Cremers, D. (2008). An improved algorithm for TV-L 1 optical flow computation. In D. Cremers, B. Rosenhahn, A. L. Yuille, & F. R. Schmidt (Eds.), Lecture notes in computer science: Vol. 5604. Statistical and geometrical approaches to visual motion analysis (pp. 23–45). Berlin: Springer.
Wedel, A., Cremers, D., Pock, T., & Bischof, H. (2009). Structure- and motion-adaptive regularization for high accuracy optic flow. In Proc. 2009 IEEE international conference on computer vision. Kyoto: IEEE Computer Society Press.
Weickert, J. (1996). Theoretical foundations of anisotropic diffusion in image processing. Computing Supplement, 11, 221–236.
Weickert, J., & Schnörr, C. (2001a). A theoretical framework for convex regularizers in PDE-based computation of image motion. International Journal of Computer Vision, 45(3), 245–264.
Weickert, J., & Schnörr, C. (2001b). Variational optic flow computation with a spatio-temporal smoothness constraint. Journal of Mathematical Imaging and Vision, 14(3), 245–255.
Werlberger, M., Pock, T., & Bischof, H. (2010). Motion estimation with non-local total variation regularization. In Proc. 2010 IEEE computer society conference on computer vision and pattern recognition. San Francisco: IEEE Computer Society Press.
Xiao, J., Cheng, H., Sawhney, H., Rao, C., & Isnardi, M. (2006). Bilateral filtering-based optical flow estimation with occlusion detection. In A. Leonardis, H. Bischof, & A. Pinz (Eds.), Lecture notes in computer science: Vol. 3951. Computer vision—ECCV 2006, Part I (pp. 211–224). Berlin: Springer.
Xu, L., Jia, J., & Matsushita, Y. (2010). Motion detail preserving optical flow estimation. In Proc. 2010 IEEE computer society conference on computer vision and pattern recognition. San Francisco: IEEE Computer Society Press.
Yaroslavsky, L. P. (1985). Digital picture processing: an introduction. Berlin: Springer.
Yoon, K. J., & Kweon, I. S. (2006). Adaptive support-weight approach for correspondence search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4), 650–656.
Zach, C., Pock, T., & Bischof, H. (2007). A duality based approach for realtime TV-L 1 optical flow. In F. Hamprecht, C. Schnörr, & B. Jähne (Eds.), Lecture notes in computer science: Vol. 4713. Pattern recognition (pp. 214–223). Berlin: Springer.
Zimmer, H., Bruhn, A., Weickert, J., Valgaerts, L., Salgado, A., Rosenhahn, B., & Seidel, H. P. (2009). Complementary optic flow. In D. Cremers, Y. Boykov, A. Blake, & F. R. Schmidt (Eds.), Lecture notes in computer science: Vol. 5681. Energy minimization methods in computer vision and pattern recognition (EMMCVPR) (pp. 207–220). Berlin: Springer.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zimmer, H., Bruhn, A. & Weickert, J. Optic Flow in Harmony. Int J Comput Vis 93, 368–388 (2011). https://doi.org/10.1007/s11263-011-0422-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11263-011-0422-6