Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2010). The Pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 88(2), 303–338. http://www.springerlink.com/content/q1x28817540788n8.
Guan, L., Franco, J.-S., & Pollefeys, M. (2010). Multi-view occlusion reasoning for probabilistic silhouette-based dynamic scene reconstruction. International Journal of Computer Vision, 90(3), 283–303. http://www.springerlink.com/content/d88176656j262128.
Kapoor, A., Grauman, K., Urtasun, R., & Darrell, T. (2010). Gaussian processes for object categorization. International Journal of Computer Vision, 88(2), 169–188. http://www.springerlink.com/content/u2163rw858331135.
Larlus, D., Verbeek, J., & Jurie, F. (2010). Category level object segmentation by combining bag-of-words models with Dirichlet processes and random fields. International Journal of Computer Vision, 88(2), 238–253. http://www.springerlink.com/content/g3786128542676p6.
Li, L.-J., & Fei-Fei, L. (2010). OPTIMOL: automatic online picture collection via incremental model learning. International Journal of Computer Vision, 88(2), 147–168. http://www.springerlink.com/content/h6h645811456802u.
Porway, J., Wang, Q., & Zhu, S. C. (2010). A hierarchical and contextual model for aerial image parsing. International Journal of Computer Vision, 88(2), 254–283. http://www.springerlink.com/content/krx7p045470u2667.
Ross, D. A., Tarlow, D., & Zemel, R. S. (2010). Learning articulated structure and motion. International Journal of Computer Vision, 88(2), 214–237. http://www.springerlink.com/content/5r843l74q5879g75.
Shi, Q., Cheng, L., Wang, L., & Smola, A. (2011). Human action segmentation and recognition using discriminative semi-Markov models. International Journal of Computer Vision, 93(1), 22–32. http://www.springerlink.com/content/t727583ml044wj12.
Triggs, B., & Williams, C. K. I. (Eds.) (2010). Special issue on probabilistic models for image understanding. International Journal of Computer Vision, 88(2), 145–146. http://www.springerlink.com/content/l5358h2021249450.
Tuytelaars, T., Lampert, C. H., Blaschko, M. B., & Buntine, W. (2010). Unsupervised object discovery: a comparison. International Journal of Computer Vision, 88(2), 284–302. http://www.springerlink.com/content/227176459vg86745.
Vidal, C., & Jedynak, B. (2010). Learning to match: deriving optimal template-matching algorithms from probabilistic image models. International Journal of Computer Vision, 88(2), 189–213. http://www.springerlink.com/content/5r843l74q5879g75.
Zhu, L., Chen, Y., Lin, C., & Yuille, A. (2011). Max margin learning of hierarchical configural deformable templates (HCDTs) for efficient object parsing and pose estimation. International Journal of Computer Vision, 93(1), 1–21. http://www.springerlink.com/content/b008u2p8r3q5262u.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Triggs, B., Williams, C.K.I. Special Issue on Probabilistic Models for Image Understanding, Part II. Int J Comput Vis 95, 313–314 (2011). https://doi.org/10.1007/s11263-011-0455-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11263-011-0455-x