Skip to main content
Log in

Geometric Image Parsing in Man-Made Environments

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We present a new optimization based parsing framework for the geometric analysis of a single image coming from a man-made environment. This framework models the scene as a composition of geometric primitives spanning different layers from low level (edges) through mid-level (lines segments, lines and vanishing points) to high level (the zenith and the horizon). The inference in such a model thus jointly and simultaneously estimates (a) the grouping of edges into the line segments, (b) the grouping of line segments into the straight lines, (c) the grouping of lines into parallel families, and (d) the positioning of the horizon and the zenith in the image. Such a unified treatment means that the uncertainty information propagates between the layers of the model. This is in contrast to most previous approaches to the same problem, which either ignore the middle levels (line segments or lines) all together, or use the bottom-up step-by-step pipeline.

For the evaluation, we consider a publicly available York Urban dataset of “Manhattan” scenes, and also introduce a new, harder dataset of 103 urban outdoor images containing many non-Manhattan scenes. The comparative evaluation for the horizon estimation task demonstrate higher accuracy and robustness attained by our method when compared to the current state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilera, D. G., Lahoz, J. G., & Codes, J. F. (2005). A new method for vanishing points detection in 3d reconstruction from a single view. In Proc. of ISPRS Commission V.

    Google Scholar 

  • Almansa, A., Desolneux, A., & Vamech, S. (2003). Vanishing point detection without any a priori information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(4), 502–507.

    Article  Google Scholar 

  • Antone, M. E., & Teller, S. J. (2000). Automatic recovery of relative camera rotations for urban scenes. In CVPR (pp. 2282–2289).

    Google Scholar 

  • Barinova, O., Lempitsky, V., & Kohli, P. (2010a). On detection of multiple object instances using hough transforms. In CVPR.

    Google Scholar 

  • Barinova, O., Lempitsky, V., Tretiak, E., & Kohli, P. (2010b). Geometric image parsing in man-made environments. In ECCV.

    Google Scholar 

  • Barnard, S. (1983). Interpreting perspective images. Artificial Intelligence, 21(4), 435–462.

    Article  Google Scholar 

  • Beardsley, P. Murray, D. (1992). Camera calibration using vanishing points. In BMVC (pp. 416–425).

    Chapter  Google Scholar 

  • Boulanger, K., Bouatouch, K., & Pattanaik, S. (2006). Atip: A tool for 3d navigation inside a single image with automatic camera calibration. In EG UK theory and practice of computer graphics.

    Google Scholar 

  • Cipolla, R., Drummond, T., & Robertson, D. P. (1999). Camera calibration from vanishing points in image of architectural scenes. In BMVC.

    Google Scholar 

  • Collins, R. T., & Weiss, R. S. (1990). Vanishing point calculation as a statistical inference on the unit sphere. In ICCV (pp. 400–403).

    Google Scholar 

  • Coughlan, J. M., & Yuille, A. L. (1999). Manhattan world: Compass direction from a single image by Bayesian inference. In ICCV (pp. 941–947).

    Google Scholar 

  • Denis, P., Elder, J. H., & Estrada, F. J. (2008). Efficient edge-based methods for estimating Manhattan frames in urban imagery. In ECCV (2) (pp. 197–210).

    Google Scholar 

  • Deutscher, J., Isard, M., & MacCormick, J. (2002). Automatic camera calibration from a single Manhattan image. In ECCV (4) (pp. 175–205).

    Google Scholar 

  • Duric, Z., & Rosenfeld, A. (1996). Image sequence stabilization in real time. Real-Time Imaging, 2(5), 271–284.

    Article  Google Scholar 

  • Flint, A., Mei, C., Reid, I., & Murray, D. (2010). Growing semantically meaningful models for visual slam. In Proc. IEEE conference on computer vision and pattern recognition (pp. 467–474). Los Alamitos: IEEE Computer Society.

    Google Scholar 

  • Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hedau, V., Hoiem, D., & Forsyth, D. (2009). Recovering the spatial layout of cluttered rooms. In ICCV (pp. 1849–1856).

    Google Scholar 

  • Hedau, V., Hoiem, D., & Forsyth, D. (2010). Thinking outside the box: using appearance models and context based on room geometry. In ECCV (pp. 224–237).

    Google Scholar 

  • Hoiem, D., Efros, A. A., & Hebert, M. (2005a). Automatic photo pop-up. ACM Transactions on Graphics, 24(3), 577–584.

    Article  Google Scholar 

  • Hoiem, D., Efros, A. A., & Hebert, M. (2005b). Geometric context from a single image. In ICCV (pp. 654–661).

    Google Scholar 

  • Hoiem, D., Efros, A. A., & Hebert, M. (2008). Putting objects in perspective. International Journal of Computer Vision, 80(1), 3–15.

    Article  Google Scholar 

  • Kosecká, J., & Zhang, W. (2002). Video compass. In ECCV (4) (pp. 476–490).

    Google Scholar 

  • Lee, D. C., Hebert, M., & Kanade, T. (2009). Geometric reasoning for single image structure recovery. In CVPR.

    Google Scholar 

  • Lee, D. C., Gupta, A., Hebert, M., & Kanade, T. (2010). Estimating spatial layout of rooms using volumetric reasoning about objects and surfaces. In NIPS.

    Google Scholar 

  • McLean, G. F., & Kotturi, D. (1995). Vanishing point detection by line clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(11), 1090–1095.

    Article  Google Scholar 

  • Morel, J.-M., Randall, G., Grompone von Gioi, R., & Jakubowicz, J. (2008). Lsd: A fast line segment detector with a false detection control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 722–732.

    MathSciNet  Google Scholar 

  • Rother, C. (2000). A new approach for vanishing point detection in architectural environments. In BMVC.

    Google Scholar 

  • Schaffalitzky, F., & Zisserman, A. (2000). Planar grouping for automatic detection of vanishing lines and points. Image and Vision Computing, 18, 647–658.

    Article  Google Scholar 

  • Schindler, G., & Dellaert, F. (2004). Atlanta world: An expectation maximization framework for simultaneous low-level edge grouping and camera calibration in complex man-made environments. In CVPR (1) (pp. 203–209).

    Google Scholar 

  • Tardif, J.-P. (2009). Non-iterative approach for fast and accurate vanishing point detection. In ICCV.

    Google Scholar 

  • Tu, Z., Chen, X., Yuille, A. L., & Zhu, S. C. (2005). Image parsing: Unifying segmentation, detection, and recognition. International Journal of Computer Vision, 63(2), 113–140.

    Article  Google Scholar 

  • Tuytelaars, T., Van Gool, L. J., Proesmans, M., & Moons, T. (1998). A cascaded hough transform as an aid in aerial image interpretation. In ICCV (pp. 67–72).

    Google Scholar 

  • Wildenauer, H., & Vincze, M. (2007). Vanishing point detection in complex man-made worlds. In ICIAP (pp. 615–622).

    Google Scholar 

  • Yu, S., Zhang, H., & Malik, J. (2008). Inferring spatial layout from a single image via depth-ordered grouping. In POCV.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Tretyak.

Additional information

Tretyak Elena, Barinova Olga and Victor Lempitsky are supported by Microsoft Research programs in Russia. Victor Lempitsky is also supported by EU under ERC grant VisRec no. 228180.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tretyak, E., Barinova, O., Kohli, P. et al. Geometric Image Parsing in Man-Made Environments. Int J Comput Vis 97, 305–321 (2012). https://doi.org/10.1007/s11263-011-0488-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-011-0488-1

Keywords

Navigation