Skip to main content
Log in

Completely Convex Formulation of the Chan-Vese Image Segmentation Model

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

The active contours without edges model of Chan and Vese (IEEE Transactions on Image Processing 10(2):266–277, 2001) is a popular method for computing the segmentation of an image into two phases, based on the piecewise constant Mumford-Shah model. The minimization problem is non-convex even when the optimal region constants are known a priori. In (SIAM Journal of Applied Mathematics 66(5):1632–1648, 2006), Chan, Esedoḡlu, and Nikolova provided a method to compute global minimizers by showing that solutions could be obtained from a convex relaxation. In this paper, we propose a convex relaxation approach to solve the case in which both the segmentation and the optimal constants are unknown for two phases and multiple phases. In other words, we propose a convex relaxation of the popular K-means algorithm. Our approach is based on the vector-valued relaxation technique developed by Goldstein et  al. (UCLA CAM Report 09-77, 2009) and Brown et al. (UCLA CAM Report 10-43, 2010). The idea is to consider the optimal constants as functions subject to a constraint on their gradient. Although the proposed relaxation technique is not guaranteed to find exact global minimizers of the original problem, our experiments show that our method computes tight approximations of the optimal solutions. Particularly, we provide numerical examples in which our method finds better solutions than the method proposed by Chan et al. (SIAM Journal of Applied Mathematics 66(5):1632–1648, 2006), whose quality of solutions depends on the choice of the initial condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberti, G., Bouchitté, G., & Dal Maso, G. (1999). The calibration method for the Mumford-Shah functional. Comptes Rendus de L’Académie Des Sciences. Series 1, Mathematics, 329(3), 249–254.

    Article  MATH  Google Scholar 

  • Ambrosio, L., Fusco, N., & Pallara, D. (2000). Functions of bounded variation and free discontinuity problems. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Arrow, K., Hurwicz, L., & Uzawa, H. (1958). Stanford mathematical studies in the social sciences: Vol. II. Studies in linear and non-linear programming. With contributions by H. B. Chenery, S. M. Johnson, S. Karlin, T. Marschak, R. M. Solow. Stanford: Stanford University Press.

    Google Scholar 

  • Bae, E., & Tai, X.-C. (2009). Graph cut optimization for the piecewise constant level set method applied to multiphase image segmentation. In International conference on scale space and variational methods in computer vision (pp. 1–13).

    Chapter  Google Scholar 

  • Bae, E., Yuan, J., & Tai, X.-C. (2009). Global minimization for continuous multiphase partitioning problems using a dual approach. International Journal of Computer Vision, 92(1), 112–129.

    Article  MathSciNet  Google Scholar 

  • Bae, E., Yuan, J., Tai, X.-C., & Boykov, Y. (2010). A study on continuous max-flow and min-cut approaches. Part II: multiple linearly ordered labels (UCLA CAM Report 10-62).

  • Berkeley Dataset. http://www.eecs.berkeley.edu/CS/vision.

  • Bertsekas, D. P. (1982). Constrained optimization and Lagrange multiplier methods. New York: Academic Press.

    MATH  Google Scholar 

  • Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J., & Osher, S. (2007). Fast global minimization of the active contour/snake models. Journal of Mathematical Imaging and Vision, 28(2), 151–167.

    Article  MathSciNet  Google Scholar 

  • Brown, E. S., Chan, T. F., & Bresson, X. (2009). Convex formulations for piecewise constant Mumford-Shah image segmentation (UCLA CAM Report 09-66).

  • Brown, E. S., Chan, T. F., & Bresson, X. (2010). A convex relaxation method for a class of vector-valued minimization problems with applications to Mumford-Shah segmentation (UCLA CAM Report 10-43).

  • Chambolle, A., Cremers, D., & Pock, T. (2008). A convex approach for computing minimal partitions (Technical report TR-2008-05). Bonn: Dept. of Computer Science, University of Bonn.

  • Chambolle, A., & Pock, T. (2010). A first-order primal-dual algorithm for convex problems with applications to imaging (R.I. 685). CMAP, Ecole Polytechnique.

  • Chan, T. F., Esedoḡlu, S., & Nikolova, M. (2006). Algorithms for finding global minimizers of image segmentation and denoising models. SIAM Journal on Applied Mathematics, 66(5), 1632–1648.

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277.

    Article  MATH  Google Scholar 

  • El-Zehiry, N., Xu, S., Sahoo, P., & Elmaghraby, A. (2007). Graph cut optimization for the Mumford-Shah model. In IASTED international conference on visualization, imaging and image processing (pp. 182–187).

    Google Scholar 

  • Esser, E., Zhang, X., & Chan, T. F. (2010). A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM Journal on Imaging Sciences, 3(4), 1015–1046.

    Article  MathSciNet  MATH  Google Scholar 

  • Evans, L. C., & Gariepy, R. F. (2000). Measure theory and fine properties of functions. Boca Raton: CRC Press.

    Google Scholar 

  • Federer, H. (1959). Curvature measures. Transactions of the American Mathematical Society, 93(3), 418–491.

    Article  MathSciNet  MATH  Google Scholar 

  • Fleming, W., & Rishel, R. (1960). An integral formula for total gradient variation. Archiv der Mathematik, 11(1), 218–222.

    Article  MathSciNet  MATH  Google Scholar 

  • Goldluecke, S., & Cremers, D. (2010). Convex relaxation for multilabel problems with product label spaces. In European conference on computer vision (pp. 225–238).

    Google Scholar 

  • Goldstein, T., Bresson, X., & Osher, S. (2009). Geometric applications of the split Bregman method: segmentation and surface reconstruction. Journal of Scientific Computing, 45(1–3), 272–293.

    MathSciNet  Google Scholar 

  • Goldstein, T., Bresson, X., & Osher, S. (2009). Global minimization of Markov random fields with applications to optical flow (UCLA CAM Report 09-77).

  • Ishikawa, H. (2003). Exact optimization for Markov random fields with convex priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10), 1333–1336.

    Article  Google Scholar 

  • Lellmann, J., Becker, F., & Schnörr, C. (2009). Convex optimization for multi-class image labeling with a novel family of total variation based regularizers. In International conference on computer vision (pp. 646–653).

    Chapter  Google Scholar 

  • Lellmann, J., Kappes, J., Yuan, J., Becker, F., & Schnörr, C. (2009). Convex multi-class image labeling by simplex-constrained total variation. In International conference on scale space and variational methods in computer vision (pp. 150–162).

    Chapter  Google Scholar 

  • Lellmann, J., & Schnörr, C. (2010). Continuous multiclass labeling approaches and algorithms (Tech. Rep.). Heidelberg: University of Heidelberg.

  • Lie, J., Lysaker, M., & Tai, X.-C. (2006). A binary level set model and some applications to Mumford-Shah image segmentation. IEEE Transactions on Image Processing, 15(5), 1171–1181.

    Article  Google Scholar 

  • Lieb, E. H., & Loss, M. (2001). Analysis. Providence: Am. Math. Soc.

    MATH  Google Scholar 

  • MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (pp. 281–297).

    Google Scholar 

  • Mumford, D., & Shah, J. (1989). Optimal approximations of piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42, 577–685.

    Article  MathSciNet  MATH  Google Scholar 

  • Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79(1), 12–49.

    Article  MathSciNet  MATH  Google Scholar 

  • Pock, T., Chambolle, A., Bischof, H., & Cremers, D. (2009). An algorithm for minimizing the Mumford-Shah functional. In IEEE conference on computer vision (ICCV).

    Google Scholar 

  • Pock, T., Cremers, D., Bischof, H., & Chambolle, A. (2010). Global solutions of variational models with convex regularization. SIAM Journal on Imaging Sciences, 2(3), 1122–1145.

    Article  MathSciNet  Google Scholar 

  • Pock, T., Schoenemann, T., Graber, G., Bischof, H., & Cremers, D. (2008). A convex formulation of continuous multi-label problems. In European conference on computer vision (ECCV) (pp. 792–805).

    Google Scholar 

  • Popov, L. D. (1980). A modification of the Arrow-Hurwitz method of search for saddle points. Matematičeskie Zametki, 28(5), 777–784, 803.

    MATH  Google Scholar 

  • Shekhovtsov, A., Kovtun, I., & Hlavác, V. (2008). Efficient MRF deformation model for non-rigid image matching. Computer Vision and Image Understanding, 112(1), 91–99.

    Article  Google Scholar 

  • Strandmark, P., Kahl, F., & Overgaard, N. C. (2009). Optimizing parametric total variation models. In International conference on computer vision (pp. 2240–2247).

    Chapter  Google Scholar 

  • Strang, G. (1983). Maximal flow through a domain. Mathematical Programming, 26(2), 123–143.

    Article  MathSciNet  MATH  Google Scholar 

  • Weizmann Dataset. http://www.weizmann.ac.il/~vision.

  • Yuan, J., Bae, E., Tai, X.-C., & Boykov, Y. (2010). A study on continuous max-flow and min-cut approaches. Part I: binary labeling (UCLA CAM Report 10-61).

  • Zach, C., Gallup, D., Frahm, J. M., & Niethammer, M. (2008). Fast global labeling for real-time stereo using multiple plane sweeps. In Vision, modeling, and visualization (pp. 243–252).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Bresson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, E.S., Chan, T.F. & Bresson, X. Completely Convex Formulation of the Chan-Vese Image Segmentation Model. Int J Comput Vis 98, 103–121 (2012). https://doi.org/10.1007/s11263-011-0499-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-011-0499-y

Keywords

Navigation