Skip to main content
Log in

Rotation Invariant Curvelet Features for Region Based Image Retrieval

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

There have been much interest and a large amount of research on content based image retrieval (CBIR) in recent years due to the ever increasing number of digital images. Texture features play a key role in CBIR. Many texture features exist in literature, however, most of them are neither rotation invariant nor robust to scale and other variations. Texture features based on Gabor filters have been shown with significant advantages over other methods, and they are adopted by MPEG-7 as one of the texture descriptors for image retrieval. In this paper, we propose a rotation invariant curvelet features for texture representation. With systematic analysis and rigorous experiments, we show that the proposed curvelet texture features significantly outperforms the widely used Gabor texture features. A novel region padding method is also proposed to apply curvelet transform to region based image retrieval. Retrieval results from standard image databases show that curvelet features are promising for both texture and region representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • http://www.curvelet.org, accessed on 23rd December (2008).

  • Arivazhagan, S., Ganesan, L., & Kumar, T. G. S. (2006). Texture classification using Curvelet statistical and co-occurrence features. In Proc. of the 18th international conference on pattern recognition (ICPR06), Washington, DC, August 20–24 (Vol. 2, pp. 938–941).

    Google Scholar 

  • Bhagavathy, S., & Chhabra, K. (2007). A wavelet-based image retrieval system (Technical Report—ECE278A). Vision Research Laboratory, University of California, Santa Barbara.

  • Candes, E., Demanet, L., Donoho, D., & Ying, L. (2006). Fast discrete curvelet transforms. Multiscale Modeling and Simulation, 5(3), 861–899.

    Article  MathSciNet  MATH  Google Scholar 

  • Chaudhuri, B. B., & Sarkar, N. (1995). Texture segmentation using fractal dimension. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(1), 72–77.

    Article  Google Scholar 

  • Chen, L., Lu, G., & Zhang, D. S. (2004). Effects of different Gabor filter parameters on image retrieval by texture. In Proc. of IEEE 10th international conference on multi-media modelling, Australia, 2004 (pp. 273–278).

    Chapter  Google Scholar 

  • Datta, R., Joshi, D., Li, J., & Wang, J. Z. (2008). Image retrieval: ideas, influences, and trends of the new age. ACM Computing Surveys, 40(2), 5:1–60.

    Article  Google Scholar 

  • Daugman, J. G. (1985). Uncertainty relation for resolution in space, spatial frequency, and orientationoptimized by two-dimensional visual cortical filters. Journal of the Optical Society of America, 2(7), 1160–1169.

    Article  Google Scholar 

  • Daugman, J. G. (1988). Complete discrete 2-D Gabor transform by neural networks for image analysis and compression. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(7), 1169–1179.

    Article  MATH  Google Scholar 

  • Daugman, J. G. (1989). Entropy reduction and decorrelation in visual coding by oriented neural receptive fields. IEEE Transactions on Biomedical Engineering, 36(1), 107–114.

    Article  Google Scholar 

  • Daugman, J. G. (1993). High confidence visual recognition of persons by a test of statistical independence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11), 1148–1161.

    Article  Google Scholar 

  • Deng, Y., & Manjunath, B. S. (2001). Unsupervised segmentation of color-texture regions in images and video. IEEE PAMI, 23(8), 800–810.

    Article  Google Scholar 

  • Do, M. N. (2001). Directional multiresolution image representations. Ph.D. thesis, EPFL.

  • Do, M. N., & Vetterli, M. (2002). Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Transactions on Image Processing, 11(2), 146–158.

    Article  MathSciNet  Google Scholar 

  • Do, M. N., & Vetterli, M. (2003). The finite ridgelet transform for image representation. IEEE Transactions on Image Processing, 12(1), 16–28.

    Article  MathSciNet  Google Scholar 

  • Duygulu, P., Barnard, K., de Freitas, N., & Forsyth, D. (2002). Object recognition as machine translation: learning a lexicon for a fixed image vocabulary. In Proc. of the 7th European conf. on computer vision (pp. 97–112).

    Google Scholar 

  • Ferecatu, M., & Boujemaa, N. (2007). Interactive remote-sensing image retrieval using active relevance feedback. IEEE Transactions on Geoscience and Remote Sensing, 45(4), 818–826.

    Article  Google Scholar 

  • Hervé, N., & Boujemaa, N. (2007). Image annotation: which approach for realistic databases? In Proc. of the 6th ACM international conf. on image and video retrieval, Amsterdam, Netherlands (pp. 70–177).

    Google Scholar 

  • Howarth, P., & Ruger, S. (2004). Evaluation of texture features for content-based image retrieval. Lecture Notes, 3115, 326–334.

    Google Scholar 

  • Huang, J., Kumar, S. R., Mitra, M., Zhu, W.-J., & Zabih, R. (1997). Image indexing using color correlograms. In Proc. of IEEE international conf. on computer vision and pattern recognition, San Juan, Puerto Rico, 17–19 June 1997 (pp. 762–768).

    Google Scholar 

  • Inoue, M. (2004). On the need for annotation-based image retrieval. In Proc. of SIGIR workshop on information retrieval in context (IRiX04), Sheffield, UK, 29th July (pp. 44–46).

    Google Scholar 

  • Islam, M., Zhang, D., & Lu, G. (2008). Automatic categorization of image regions using dominant color based vector quantization. In Proc. of digital image computing: techniques and applications (DICTA08), Canberra, Australia, 1–3 December (pp. 191–198).

    Chapter  Google Scholar 

  • Islam, M. M., Zhang, D., & Lu, G. (2009). Region based color image retrieval using curvelet transform. In Proc. of the 9th Asian conference on computer vision (ACCV2009), Xian, China, Sept. 23–27.

    Google Scholar 

  • Jeon, J., Lavrenko, V., & Manmatha, R. (2003). Automatic image annotation and retrieval using cross-media relevance models. In Proc. of the 26th annual international ACM SIGIR conference on research and development in information retrieval (pp. 119–126).

    Google Scholar 

  • Joutel, G., Eglin, V., Bres, S., & Emptoz, H. (2007a). Curvelets based feature extraction of handwritten shapes for ancient manuscripts classification. In SPIE: Vol. 6500. Proc. of SPIE-IS&T electronic imaging (65000D).

    Google Scholar 

  • Joutel, G., Eglin, V., Bres, S., & Emptoz, H. (2007b). Curvelets based queries for CBIR application in handwriting collections. In Ninth international conference on document analysis and recognition (ICDAR 2007) (pp. 649–653).

    Google Scholar 

  • Kokare, M., Biswas, P. K., & Chatterji, B. N. (2006). Rotation-invariant texture image retrieval using rotated complex wavelet filters. IEEE Transactions on Systems, Man and Cybernetics. Part B, 36(6), 1273–1282.

    Article  Google Scholar 

  • Lew, M. S., Sebe, N., Djeraba, C., & Jain, R. (2006). Content-based multimedia information retrieval: state of the art and challenges. ACM Transactions on Multimedia Computing Communications and Applications, 2(1), 1–19.

    Article  Google Scholar 

  • Li, S. Z., Chan, K. L., & Wang, C. (2000). Performance evaluation of the nearest feature line method in image classification and retrieval. IEEE PAMI, 22(11), 1335–1339.

    Article  Google Scholar 

  • Liu, F., & Picard, R. W. (1996). Periodicity, directionality, and randomness: wold features for image modeling and retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(7), 722–733.

    Article  Google Scholar 

  • Liu, Y., Zhang, D. S., & Lu, G. (2007). A survey of content-based image retrieval with high-level semantics. Pattern Recognition, 40(1), 262–282.

    Article  MATH  Google Scholar 

  • Liu, Y., Zhang, D., & Lu, G. (2008). Region-based image retrieval with high-level semantics using decision tree learning. Pattern Recognition, 41(8), 2554–2570.

    Article  MATH  Google Scholar 

  • Long, F., Zhang, H. J., & Feng, D. D. (2003). Fundamentals of content-based image retrieval. In D. Feng (Ed.), Multimedia information retrieval and management. Berlin: Springer.

    Google Scholar 

  • Lu, Z., Li, S., & Burkhardt, H. (2006). A content-based image retrieval scheme in JPEG compressed domain. International Journal of Innovative Computing, Information and Control, 2(4), 831–839.

    Google Scholar 

  • Lu, Y., Zhang, L., Tian, Q., & Ma, W.-Y. (2008). What are the high-level concepts with small semantic gaps? In Proc. of international conf. on computer vision and pattern recognition (CVPR08), 23–28 June 2008 (pp. 1–8).

    Google Scholar 

  • Ma, W. Y., & Manjunath, B. S. (1995). A comparison of wavelet transform features for texture image annotation. In Proc. of the IEEE international conference on image processing (ICIP), Washington, DC, Oct. 23–26 (Vol. 2, pp. 256–259).

    Chapter  Google Scholar 

  • Manjunath, B. S., & Ma, W. Y. (1996). Texture features for browsing and retrieval of large image data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8), 837–842.

    Article  Google Scholar 

  • Manjunath, B. S., Ohm, J., Vasudevan, V. V., & Yamada, A. (2001). Color and texture descriptors. IEEE Transactions CSVT, 11(6), 703–715.

    Google Scholar 

  • Manjunath, B. S., Salembier, P., & Sikora, T. (2002). Introduction to MPEG-7. New York: Wiley.

    Google Scholar 

  • Ng, C. R., Lu, G., & Zhang, D. (2005). A new approach to texture retrieval. In Proc. of IEEE international workshop on multimedia signal processing (MMSP05), Shanghai, China, Oct. 30 to Nov. 2.

    Google Scholar 

  • Ngo, C. W., Pong, T. C., & Chin, R. T. (2001). Exploiting image indexing techniques in DCT domain. Pattern Recognition, 34(9), 1841–1851.

    Article  MATH  Google Scholar 

  • Niblack, W., et al. (1993). The QBIC project: querying image by content using color, texture and shape. Proceedings of SPIE Storage and Retrieval for Image and Video Databases, 1908, 173–187.

    Google Scholar 

  • Semler, L., & Dettori, L. (2006). Curvelet-based texture classification of tissues in computed tomography. In Proc. of the IEEE international conference on image processing, 8–11 Oct. (pp. 2165–2168).

    Google Scholar 

  • Shekhar, R., & Chaudhuri, S. (2005). In Lecture notes in computer science: Vol. 3776. Use of contourlets for image retrieval (pp. 563–569).

    Google Scholar 

  • Starck, J., Candès, E. J., & Donoho, D. L. (2002). The curvelet transform for image denoising. IEEE Transactions on Image Processing, 11(6), 670–684.

    Article  MathSciNet  Google Scholar 

  • Suematsu, N., Ishida, Y., Hayashi, A., & Kanbara, T. (2002). Region-based image retrieval using wavelet transform. In Proc. 15th international conf. on vision interface, May 2002.

    Google Scholar 

  • Sumana, I., Islam, M., Zhang, D., & Lu, G. (2008). Content based image retrieval using curvelet transform. In Proc. of IEEE international workshop on multimedia signal processing (MMSP08), Cairns, Australia, October 8–10 (pp. 11–16).

    Google Scholar 

  • Tamura, H., Mori, S., & Yamawaki, T. (1978). Texture features corresponding to visual perception. IEEE Transactions on Systems, Man, and Cybernetics, 8(6), 460–473.

    Article  Google Scholar 

  • Vasconcelos, N. (2007). From pixels to semantic spaces: advances in content-based image retrieval. IEEE Computer, 40(7), 20–26.

    Article  Google Scholar 

  • Vertan, C., & Boujemaa, N. (2000). Upgrading color distributions for image retrieval: Can we do better? In Proc. int. conf. VISUAL, Nov. 2000 (pp. 178–188).

    Google Scholar 

  • Wang, J. Z., Li, J., & Wiederhold, G. (2001). SIMPLIcity: Semantics-sensitive integrated matching for picture libraries. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(9), 947–963.

    Article  Google Scholar 

  • Wang, C., Jing, F., Zhang, L., & Zhang, H. (2006). Image annotation refinement using random walk with restarts. In Proc. of the 14th ACM international conference on multimedia, Santa Barbara, CA, USA, Oct. 23–27 (pp. 647–650).

    Chapter  Google Scholar 

  • Wang, C., Jing, F., Zhang, L., & Zhang, H.-J. (2007). Content-based image annotation refinement. In Proc. of international conf. on computer vision and pattern recognition (CVPR07) (pp. 1–8).

    Google Scholar 

  • Wang, C., Zhang, L., & Zhang, H. (2008a). Learning to reduce the semantic gap in web image retrieval and annotation. In Proc. of the 31st annual international ACM SIGIR conf. on research and development in information retrieval (SIGIR08), Singapore, 20–24 July 2008 (pp. 355–362).

    Google Scholar 

  • Wang, C., Zhang, L., & Zhang, H. (2008b). Scalable Markov model-based image annotation. In Proc. of international conference on content-based image and video retrieval (CIVR08), Canada, 07–09 July 2008 (pp. 113–118).

    Chapter  Google Scholar 

  • Zhang, D., & Lu, G. (2000). Content-based image retrieval using Gabor texture features. In Proc. of first IEEE pacific-rim conference on multimedia (PCM00), Sydney, Australia, December 13–15 (pp. 1139–1142).

    Google Scholar 

  • Zhang, D., & Lu, G. (2003). Evaluation of similarity measurement for image retrieval. In Proc. of IEEE international conference on neural networks & signal processing (ICNNSP03), Nanjing, China, Dec. 14–17 (pp. 928–931).

    Chapter  Google Scholar 

  • Zhang, D., & Lu, G. (2004). Review of shape representation and description techniques. Pattern Recognition, 37(1), 1–19.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengsheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Islam, M.M., Lu, G. et al. Rotation Invariant Curvelet Features for Region Based Image Retrieval. Int J Comput Vis 98, 187–201 (2012). https://doi.org/10.1007/s11263-011-0503-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-011-0503-6

Keywords

Navigation