Skip to main content
Log in

Shape-Based Object Detection via Boundary Structure Segmentation

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We address the problem of object detection and segmentation using global holistic properties of object shape. Global shape representations are highly susceptible to clutter inevitably present in realistic images, and thus can be applied robustly only using a precise segmentation of the object. To this end, we propose a figure/ground segmentation method for extraction of image regions that resemble the global properties of a model boundary structure and are perceptually salient. Our shape representation, called the chordiogram, is based on geometric relationships of object boundary edges, while the perceptual saliency cues we use favor coherent regions distinct from the background. We formulate the segmentation problem as an integer quadratic program and use a semidefinite programming relaxation to solve it. The obtained solutions provide a segmentation of the object as well as a detection score used for object recognition. Our single-step approach achieves state-of-the-art performance on several object detection and segmentation benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basri, R., Costa, L., Geiger, D., & Jacobs, D. (1998). Determining the similarity of deformable shapes. Vision Research, 38(15–16), 2365–2385.

    Article  Google Scholar 

  • Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4), 509–522.

    Article  Google Scholar 

  • Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94(2), 115–147.

    Article  Google Scholar 

  • Binford, T. O. (1971). Visual perception by computer. In IEEE conference on systems and control.

    Google Scholar 

  • Blum, H. (1973). Biological shape and visual science. Journal of Theoretical Biology, 38(2), 205–287.

    Article  Google Scholar 

  • Borenstein, E., Sharon, E., & Ullman, S. (2004). Combining top-down and bottom-up segmentation. In IEEE computer society conference on computer vision and pattern recognition.

    Google Scholar 

  • Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Carlsson, S. (1999). Order structure, correspondence and shape based categories. In International workshop on shape, contour and grouping.

    Google Scholar 

  • Chekuri, C., Khanna, S., Naor, J., & Zosin, L. (2005). A linear programming formulation and approximation algorithms for the metric labeling problem. SIAM Journal on Discrete Mathematics, 18(3), 608–625.

    Article  MathSciNet  MATH  Google Scholar 

  • Cootes, T. (1995). Active shape models-their training and application. Computer Vision and Image Understanding, 61(1), 38–59.

    Article  Google Scholar 

  • Cour, T., Benezit, F., & Shi, J. (2005). Spectral segmentation with multiscale graph decomposition. In IEEE computer society conference on computer vision and pattern recognition.

    Google Scholar 

  • Felzenszwalb, P., & Schwartz, J. (2007). Hierarchical matching of deformable shapes. In IEEE computer society conference on computer vision and pattern recognition.

    Google Scholar 

  • Ferrari, V., Tuytelaars, T., & Gool, L. V. (2006). Object detection by contour segment networks. In European conference on computer vision.

    Google Scholar 

  • Ferrari, V., Jurie, F., & Schmid, C. (2007). Accurate object detection with deformable shape models learnt from images. In IEEE computer society conference on computer vision and pattern recognition.

    Google Scholar 

  • Ferrari, V., Fevrier, L., Jurie, F., & Schmid, C. (2008). Groups of adjacent contour segments for object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(1), 36–51.

    Article  Google Scholar 

  • Ferrari, V., Jurie, F., & Schmid, C. (2010). From images to shape models for object detection. International Journal of Computer Vision, 87(3), 284–303.

    Article  Google Scholar 

  • Fritz, M., & Schiele, B. (2008). Decomposition, discovery and detection of visual categories using topic models. In IEEE computer society conference on computer vision and pattern recognition.

    Google Scholar 

  • Goemans, M. X., & Williamson, D. (1995). Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42(6), 1115–1145.

    Article  MathSciNet  MATH  Google Scholar 

  • Gold, S., & Rangarajan, A. (1996). A graduated assignment algorithm for graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(4), 377–388.

    Article  Google Scholar 

  • Gorelick, L., & Basri, R. (2009). Shape based detection and top-down delineation using image segments. International Journal of Computer Vision, 83(3), 211–232.

    Article  Google Scholar 

  • Grant, M., & Boyd, S. (2010). CVX: Matlab software for disciplined convex programming, version 1.21. http://cvxr.com/cvx.

  • Grimson, W., & Lozano-Perez, T. (1987). Localizing overlapping parts by searching the interpretation tree. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(4), 469–482.

    Article  Google Scholar 

  • Gu, C., Lim, J., Arbelaez, P., & Malik, J. (2009). Recognition using regions. In IEEE computer society conference on computer vision and pattern recognition.

    Google Scholar 

  • Huttenlocher, D., Klanderman, D., & Rucklige, A. (1993). Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9), 850–863.

    Article  Google Scholar 

  • Indyk, P., & Thaper, N. (2003). Fast image retrieval via embeddings. In 3rd international workshop on statistical and computational theories of vision.

    Google Scholar 

  • Joachims, T. (1999). Making large-scale svm learning practical. In Advances in kernel methods—support vector learning.

    Google Scholar 

  • Kimia, B., Tannenbaum, A., & Zucker, S. (1995). Shapes, shocks, and deformations I: the components of two-dimensional shape and the reaction-diffusion space. International Journal of Computer Vision, 15(3), 189–224.

    Article  Google Scholar 

  • Koffka, K. (1935). Principles of gestalt psychology. London: Lund Humphries.

    Google Scholar 

  • Lamdan, Y., Schwartz, J., & Wolfson, H. (1990). Affine invariant model-based object recognition. IEEE Transactions on Robotics and Automation, 6(5), 578–589.

    Article  Google Scholar 

  • Latecki, L., & Lakamper, R. (2000). Shape similarity measure based on correspondence of visual parts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(10), 1185–1190.

    Article  Google Scholar 

  • Latecki, L., Lakamper, R., & Eckhardt, U. (2000). Shape descriptors for non-rigid shapes with a single closed contour. In IEEE computer society conference on computer vision and pattern recognition.

    Google Scholar 

  • Leibe, B., Leonardis, A., & Schiele, B. (2008). Robust object detection with interleaved categorization and segmentation. International Journal of Computer Vision, 77(1), 259–289.

    Article  Google Scholar 

  • Leordeanu, M., Hebert, M., & Sukthankar, R. (2007). Beyond local appearance: Category recognition from pairwise interactions of simple features. In IEEE computer society conference on computer vision and pattern recognition.

    Google Scholar 

  • Levin, A., & Weiss, Y. (2006). Learning to combine bottom-up and top-down segmentation. In European conference on computer vision.

    Google Scholar 

  • Ling, H., & Jacobs, D. (2007). Shape classification using the inner-distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(2), 286–299.

    Article  Google Scholar 

  • Lu, C., Latecki, L. J., Adluru, N., Yang, X., & Ling, H. (2009). Shape guided contour grouping with particle filters. In International conference on computer vision.

    Google Scholar 

  • Maji, S., & Malik, J. (2009). Object detection using a max-margin hough transform. In IEEE computer society conference on computer vision and pattern recognition.

    Google Scholar 

  • Malisiewicz, T., & Efros, A. A. (2008). Recognition by association via learning per-exemplar distances. In IEEE computer society conference on computer vision and pattern recognition.

    Google Scholar 

  • Marr, D. (2010). Vision: A computational investigation into the human representation and processing of visual information. New York: Henry Holt.

    Google Scholar 

  • Martin, D., Fowlkes, C., & Malik, J. (2004). Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5), 530–549.

    Article  Google Scholar 

  • Mcneill, G., & Vijayakumar, S. (2006). Hierarchical Procrustes matching for shape retrieval. In IEEE computer society conference on computer vision and pattern recognition.

    Google Scholar 

  • Mokhtarian, F., Abbasi, S., & Kittler, J. (1997). Efficient and robust retrieval by shape content through curvature scale space. Image Databases and Multi-Media Search, 51–58.

  • Opelt, A., Pinz, A., & Zisserman, A. (2006). A boundary-fragment-model for object detection. In European conference on computer vision.

    Google Scholar 

  • Osada, R., Funkhouser, T., Chazelle, B., & Dobkin, D. (2002). Shape distributions. ACM Transactions on Graphics, 21(4), 807–832.

    Article  Google Scholar 

  • Palmer, S. E. (1999). Vision science: Photons to phenomenology. Cambridge: The MIT Press.

    Google Scholar 

  • Pentland, A. (1986). Perceptual organization and the representation of natural form. Artificial Intelligence, 28(3), 293–331.

    Article  MathSciNet  Google Scholar 

  • Pizer, S., Fritsch, D., Yushkevich, P., Johnson, V., & Chaney, E. (1999). Segmentation, registration, and measurement of shape variation via image object shape. IEEE Transactions on Medical Imaging, 18(10), 851–865.

    Article  Google Scholar 

  • Ravishankar, S., Jain, A., & Mittal, A. (2008). Multi-stage contour based detection of deformable objects. In European conference on computer vision.

    Google Scholar 

  • Ren, X., Fowlkes, C., & Malik, J. (2005). Cue integration in figure/ground labeling. In Neural information processing systems.

    Google Scholar 

  • Russell, B., Efros, A. A., Sivic, J., Freeman, B., & Zisserman, A. (2006). Using multiple segmentations to discover objects and their extent in image collections. In IEEE computer society conference on computer vision and pattern recognition.

    Google Scholar 

  • Schoenemann, T., & Cremers, D. (2007). Globally optimal image segmentation with an elastic shape prior. In International conference on computer vision.

    Google Scholar 

  • Sebastian, T., Klein, P., & Kimia, B. (2003). On aligning curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(1), 116–125.

    Article  Google Scholar 

  • Sebastian, T., Klein, P., & Kimia, B. (2004). Recognition of shapes by editing their shock graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5), 550–571.

    Article  Google Scholar 

  • Shapiro, L., & Haralick, R. (1979). Structural descriptions and inexact matching (Technical report CS79011-R). Computer Science, Virginia Tech.

  • Shotton, J., Blake, A., & Chipolla, R. (2005). Contour-based learning for object detection. In International conference on computer vision.

    Google Scholar 

  • Shotton, J., Winn, J., Rother, C., & Criminisi, A. (2009). Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context. International Journal of Computer Vision, 81(1), 2–23.

    Article  Google Scholar 

  • Siddiqi, K., Shokoufandeh, A., Dickinson, S., & Zucker, S. (1999). Shock graphs and shape matching. International Journal of Computer Vision, 35(1), 13–32.

    Article  Google Scholar 

  • Srinivasan, P., Zhu, Q., & Shi, J. (2010). Many-to-one contour matching for describing and discriminating object shape. In IEEE computer society conference on computer vision and pattern recognition.

    Google Scholar 

  • Sturm, J. F. (1999). Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optimization Methods & Software, 11(12), 625–653.

    Article  MathSciNet  Google Scholar 

  • Toshev, A., Taskar, B., & Daniilidis, K. (2010). Object detection via boundary structure segmentation. In IEEE computer society conference on computer vision and pattern recognition.

    Google Scholar 

  • Trinh, N. H., & Kimia, B. B. (2011). Skeleton search: Category-specific object recognition and segmentation using a skeletal shape model. International Journal of Computer Vision, 94(2), 215–240.

    Article  Google Scholar 

  • Tu, Z., & Yuille, A. (2004). Shape matching and recognition–using generative models and informative features. In Seventh European conference on computer vision.

    Google Scholar 

  • Umeyama, S. (1988). An eigendecomposition approach to weighted graph matching problems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(5), 695–703.

    Article  MATH  Google Scholar 

  • Yoshida, K., & Sakoe, H. (1982). Online handwritten character recognition for a personal computer system. IEEE Transactions on Consumer Electronics, 3, 202–209.

    Article  Google Scholar 

  • Yu, S. X., & Shi, J. (2003). Multiclass spectral clustering. In International conference on computer vision.

    Google Scholar 

  • Zhang, D., & Lu, G. (2003). Evaluation of mpeg-7 shape descriptors against other shape descriptors. Multimedia Systems, 9(1), 15–30.

    Article  Google Scholar 

  • Zhu, Q., Wang, L., Wu, Y., & Shi, J. (2008). Contour context selection for object detection: A set-to-set contour matching approach. In European conference on computer vision.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Toshev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toshev, A., Taskar, B. & Daniilidis, K. Shape-Based Object Detection via Boundary Structure Segmentation. Int J Comput Vis 99, 123–146 (2012). https://doi.org/10.1007/s11263-012-0521-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-012-0521-z

Keywords

Navigation