Abstract
The Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework acting on currents is a conceptually powerful tool for matching highly varying shapes. In the classical approach, the numerical treatment is based on currents representing individual particles, and couples the discretization of shape and deformation. This design restricts the capabilities of LDDMM. In this work, we propose to decouple current and deformation discretization by using conforming adaptive finite elements. We show how to efficiently (a) compute the temporal evolution of discrete \(m\)-current attributes for any \(m\), and (b) incorporate multiple scales into the matching process. This effectively leads to more flexibility, which is demonstrated in several numerical experiments on anatomical shapes.



















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
This work extends the authors’ contribution to the Proceedings of the Third International Workshop on Mathematical Foundations of Computational Anatomy—Geometrical and Statistical Methods for Modeling Biological Shape Variability in Günther et al. (2011).
Pelvic bone data by courtesy of Markus Heller, Julius Wolff Institute and Center for Musculoskeletal Surgery Charité—Universitätsmedizin Berlin, Germany. Mandible data by courtesy of Max Zinser, Universitätsklinikum Köln, Germany.
References
Adams, R. (1975). Sobolev spaces. New York: Academic Press.
Beg, M. F., Miller, M. I., Trouvé, A., & Younes, L. (2005). Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61(2), 139–157. doi:10.1023/B:VISI.0000043755.93987.aa.
Burger, M., Ruthotto, L., & Modersitzki, J. (2011). A hyperelastic regularization energy for image registration. Münster: WWU Münster.
Camion, V., & Younes, L. (2001). Geodesic interpolating splines energy minimization methods in computer vision and pattern recognition. Berlin: Springer.
Cao, Y., Miller, M. I., Winslow, R. L., & Younes, L. (2005). Large deformation diffeomorphic metric mapping of vector fields. IEEE Transactions on Medical Imaging, 24(9), 1216–1230.
Ciarlet, P. (1987). The finite element method for elliptic problems. Amsterdam: North-Holland.
Cotter, C. (2008). The variational particle-mesh method for matching curves. Journal of Physics A: Mathematical and Theoretical, 41(34): 344003.
Deuflhard, P., & Weiser, M. (2012). Adaptive numerical solution of PDEs. Berlin: de Gruyter.
Dupuis, P., Grenander, U., & Miller, M. I. (1998). Variational problems on flows of diffeomorphisms for image matching. Quarterly of Applied Mathematics, 56(3), 587–600.
Durrleman, S. (2010). Statistical models of currents for measuring the variability of anatomical curves, surfaces and their evolution. Thèse de sciences (phd thesis), Université de Nice-Sophia Antipolis, Cedex.
Durrleman, S., Pennec, X., Trouvé, A., & Ayache, N. (2009). Statistical models of sets of curves and surfaces based on currents. Medical Image Analysis, 13(5), 793–808. doi:10.1016/j.media.2009.07.007; includes special section on the 12th international conference on medical imaging and computer assisted intervention.
Federer, H. (1969). Geometric measure theory. Report of the 1969. Berlin: Springer-Verlag.
Glaunès, J. (2005). Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes et l’anatomie numérique. PhD thesis, Université Paris, Paris.
Glaunès. J., Trouvé A., Younes, L. (2004). Diffeomorphic matching of distributions: a new approach for unlabelled point-sets and sub-manifolds matching. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2 (pp. 712–718). Washington, DC: CVPR. doi:10.1109/CVPR.2004.1315234.
Glaunès, J., Qiu, A., Miller, M. I., & Younes, L. (2008). Large deformation diffeomorphic metric curve mapping. International Journal of Computer Vision, 80(3), 317–336. doi:10.1007/s11263-008-0141-9.
Günther, A., Lamecker H., Weiser, M., (2011). Direct lddmm of discrete currents with adaptive finite elements. In X. Pennec, S. Joshi, & M. Nielsen (Eds.), Proceedings of 3rd MICCAI Workshop on Mathematical Foundations of Computational Anatomy (pp. 1–15). Beijing: MICCAI .
Haber, E., Heldmann, S., & Modersitzki, J. (2008). Adaptive mesh refinement for nonparametric image registration. SIAM Journal on Scientific Computing, 30(6), 3012–3027. doi:10.1137/070687724.
Joshi, S. C., & Miller, M. I. (2000). Landmark matching via large deformation diffeomorphisms. IEEE Transactions on Image Processing, 9(8), 1357–1370. doi:10.1109/83.855431.
Kirk, B. S., Peterson, J. W., Stogner, R. H., & Carey, G. F. (2006). libMesh: A C++ library for parallel adaptive mesh refinement/coarsening simulation. Engineering with Computers, 22(3–4), 237–254.
Marsland, S., & Twining, C. (2004). Constructing diffeomorphic representations for the groupwise analysis of non-rigid registrations of medical images. IEEE Transactions on Medical Imaging, 23(8), 1006–1020.
Mattheij, R. M., & Molenaar, J. (2002). Ordinary differential equations in theory and practice. Reprint of (1996) original. In Classics in applied mathematics. Philadelphia: SIAM.
Morgan, F. (2009). Geometric measure theory: A beginner’s guide (4th ed.). New York: Elsevier.
Morita, S. (2001). Geometry of differential forms. New York: American Mathematical Society.
Risser, L., Vialard, F. X., Wolz, R., Holm, D. D., & Rueckert, D. (2010). Simultaneous fine and coarse diffeomorphic registration: Application to atrophy measurement in Alzheimer’s disease. In T. Jiang, N. Navab, J. Pluim, M. Viergever (Eds.), Medical image computing and computer-assisted intervention. Lecture notes in computer science, Vol. 6362 (pp. 610–617). Berlin/Heidelberg: Springer. doi:10.1007/978-3-642-15745-5_75.
Sommer, S. H., Nielsen, M., Lauze, F. B., & Pennec, X. (2011). A multi-scale kernel bundle for LDDMM: Towards sparse deformation description across space and scales. In G. Szkely & H. Hahn (Eds.), Information processing in medical imaging. Lecture notes in computer science, Vol. 6801 (pp. 624–635). Berlin/Heidelberg: Springer. doi:10.1007/978-3-642-22092-0_51.
Trouvé, A. (1995). An infinite dimensional group approach for physics based models in pattern recognition. Technical report. Baltimore: Johns Hopkins University.
Vaillant, M., & Glaunès, J. (2005). Surface matching via currents. In G. Christensen & M. Sonka (Eds.), Information processing in medical imaging. Lecture notes in computer science, Vol. 3565 (pp. 1–5). Berlin/Heidelberg: Springer. doi:10.1007/11505730_32.
Younes, L. (2010). Shapes and diffeomorphisms. In Applied mathematical sciences, Vol. 171. Berlin: Springer. doi:10.1007/978-3-642-12055-8.
Acknowledgments
This work was supported by the German DFG Research Center Matheon, Project F2. We thank Stanley Durrleman from the University of Utah for the fruitful discussion and helpful suggestions at the initial phase of this paper. Furthermore, we thank Malik Kirchner for implementing parts of the required tools.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Günther, A., Lamecker, H. & Weiser, M. Flexible Shape Matching with Finite Element Based LDDMM. Int J Comput Vis 105, 128–143 (2013). https://doi.org/10.1007/s11263-012-0599-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11263-012-0599-3