Skip to main content
Log in

Passive Three Dimensional Face Recognition Using Iso-Geodesic Contours and Procrustes Analysis

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We introduce a new model for personal recognition based on the 3-D geometry of the face. The model is designed for application scenarios where the acquisition conditions constrain the facial position. The 3-D structure of a facial surface is compactly represented by sets of contours (facial contours) extracted around automatically pinpointed nose tip and inner eye corners. The metric used to decide whether a point on the face belongs to a facial contour is its geodesic distance from a given landmark. Iso-geodesic contours are inherently robust to head pose variations, including in-depth rotations of the face. Since these contours are extracted from rigid parts of the face, the resulting recognition algorithms are insensitive to changes in facial expressions. The facial contours are encoded using innovative pose invariant features, including Procrustean distances defined on pose-invariant curves. The extracted features are combined in a hierarchical manner to create three parallel face recognizers. Inspired by the effectiveness of region ensembles approaches, the three recognizers constructed around the nose tip and inner corners of the eyes are fused both at the feature-level and the match score-level to create a unified face recognition algorithm with boosted performance. The performances of the proposed algorithms are evaluated and compared with other algorithms from the literature on a large public database appropriate for the assumed constrained application scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Bachelor of Science in Biometric Systems, West Virginia University. Retrieved from http://www.lcsee.cemr.wvu.edu/ugrad/degree-info.php?degree=bsbs.

  • Biometrics frequently asked questions (2006). Retrieved from http://www.biometrics.gov/Documents/FAQ.pdf

  • Berretti, S., Bimbo, A. D., & Pala, P. (2010). 3d face recognition using iso-geodesic stripes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(12), 2162–2177. doi:10.1109/TPAMI.2010.43.

    Article  Google Scholar 

  • Besl, P. J., & McKay, H. D. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256.

    Article  Google Scholar 

  • Boehnen, C., Peters, T., & Flynn, P. (2009). 3D Signatures for Fast 3D Face Recognition. In M. Tistarelli & M. S. Nixon (Eds.), Advances in Biometrics, Lecture Notes in Computer Science (Vol. 5558, pp. 12–21). Berlin: Springer.

  • Bowyer, K., Chang, K., & Flynn, P. (2006). A survey of approaches and challenges in 3D and multi-modal 3D+2D face recognition. Computer Vision and Image Understanding, 101(1), 1–15.

    Article  Google Scholar 

  • Bowyer, K. W., Chang, K., & Flynn, P. (January 2004). A Survey Of 3D and Multi-Modal 3D+2D Face Recognition. Tech. rep. Notre Dame Department of Computer Science and Engineering Technical Report

  • Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2005). Three-dimensional face recognition. International Journal of Computer Vision, 64(1), 5–30.

    Article  Google Scholar 

  • Chang, K., Bowyer, K., & Flynn, P. (2003). Face recognition using 2D and 3D facial data. In ACM Workshop on Multimodal User Authentication (pp. 25–32).

  • Chua, C. S., Han, F., & Ho, Y. K. (2000) 3D human face recognition using point signature. In Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, (Vol. 1, pp. 233–238)

  • Duda, R., Hart, P., & Stork, D. (2001). Pattern classification. New York: Wiley.

    MATH  Google Scholar 

  • Due Trier, Ř., Jain, A. K., & Taxt, T. (1996). Feature extraction methods for character recognition-a survey. Pattern recognition, 29(4), 641–662.

    Google Scholar 

  • Egan, J. (1975). Signal detection theory and ROC-analysis. New York: Academic Press.

    Google Scholar 

  • Faltemier, T., Bowyer, K., & Flynn, P. (2008). A region ensemble for 3-D face recognition. IEEE Transactions on Information Forensics and Security, 3(1), 62–73.

    Article  Google Scholar 

  • Gokberk, B., Salah, A. A., & Akarun, L. (2005). Rank-Based Decision Fusion for 3D Shape-Based Face Recognition. Lecture Notes in Computer Science, 3546, 1019.

    Article  Google Scholar 

  • Grother, P., Micheals, R., & Phillips, P. (2003). Face recognition vendor test 2002 performance metrics. In Proceedings of 2nd International Conference on Audio-and Video-Based Biometric Person Authentication (pp. 937–945).

  • Gupta, S., Castleman, K. C., Markey, M. K., & Bovik, A. C. (2010). Texas 3D Face Recognition Database. In IEEE Southwest Symposium on Image Analysis and Interpretation, 2010 (SSIAI 2010) (pp. 25–28).

  • Gupta, S., Markey, M., & Bovik, A. (2010). Anthropometric 3d face recognition. International Journal of Computer Vision, 90, 331–349.

    Article  Google Scholar 

  • Gupta, S., Markey, M. K., & Bovik, A. C. (2007). Advances and challenges in 3D and 2D+3D human face recognition. In M. S. Corrigan (Ed.), Pattern Recognition in Biology (pp. 63–113). Nova Science Publishers, Inc.

  • Heseltine, T., Pears, N., & Austin, J. (2004). Three-dimensional face recognition: A fishersurface approach. In A. Campilho & M. Kamel (Eds.), Image Analysis and Recognition (pp. 684–691). Berlin: Springer.

    Chapter  Google Scholar 

  • Hesher, C., Srivastava, A., & Erlebacher, G. (2003). A novel technique for face recognition using range imaging. In Proceedings Seventh International Symposium on Signal Processing and Its Applications, 2003 (Vol. 2, pp. 201–204). doi:10.1109/ISSPA.2003.1224850.

  • Hu, M. K. (1962). Visual pattern recognition by moment invariants. IRE Transactions on Information Theory, 8(2), 179–187.

    Article  MATH  Google Scholar 

  • ICAO. (2004). NTWG. Biometrics Deployment of Machine Readable Travel Documents. Technical report. http://www.icao.int/mrtd

  • Jahanbin, S., Bovik, A. C., & Choi, H. (2008). Automated facial feature detection from portrait and range images. In IEEE Southwest Symposium on Image Analysis and Interpretation, 2008 (SSIAI 2008) (pp. 25–28).

  • Jahanbin, S., Choi, H., Liu, Y., & Bovik A. C. (2008). Three Dimensional Face Recognition Using Iso-Geodesic and Iso-Depth Curves. In 2nd IEEE International Conference on Biometrics: Theory, Applications and Systems, 2008 (BTAS 2008) (pp. 1–6)

  • Kakadiaris, I., Passalis, G., Toderici, G., Murtuza, M., Lu, Y., & Theoharis, T. (2007). Three-dimensional face recognition in the presence of facial expressions: An annotated deformable model approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(4), 640–649.

    Article  Google Scholar 

  • Kimmel, R., Sethian, J. (1998). Computing geodesics on manifolds. Proceedings of National Academy Sciences (pp. 8431–8435).

  • Kuhl, F. P., & Giardina, C. R. (1982). Elliptic Fourier features of a closed contour. Computer graphics and image processing, 18(3), 236–258.

    Article  Google Scholar 

  • Latta, N. (2004). US VISIT: Keeping Americas Doors Open and Our Nation Secure. Washington, DC: Biometric Consortium.

    Google Scholar 

  • Le Zou, S. C., Xiong, Z., Lu, M., & Castleman, K. R. (2007). 3-D face recognition based on warped example faces. IEEE Transactions on Information Forensics and Security, 2(3), 513–528.

    Article  Google Scholar 

  • Lu, X., & Jain, A. K. (2005). Integrating Range and Texture Information for 3D Face Recognition. In Proceedings of the Seventh IEEE Workshops on Application of Computer Vision (WACV/MOTION’05) (Vol. 1, pp. 156–163). Washington, DC: IEEE Computer Society.

  • Lu, X., Jain, A. K., & Colbry, D. (2006). Matching 2.5 D face scans to 3D models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1), 31–43.

    Article  Google Scholar 

  • Mahoor, M. H., & Abdel-Mottaleb, M. (2009). Face recognition based on 3d ridge images obtained from range data. Pattern Recognition, 42(3), 445–451. doi:10.1016/j.patcog.2008.08.012. http://www.sciencedirect.com/science/article/B6V14-4T7F5JV-1/2/750012b09de8c1739c4bca5d009b3b57.

    Google Scholar 

  • Maurer, T., Guigonis, D., Maslov, I., Pesenti, B., Tsaregorodtsev, A., West, D., & Medioni, G. (2005). Performance of Geometrix ActiveID 3D Face Recognition Engine on the FRGC Data. In Computer Vision and Pattern Recognition, Workshop (p. 154). doi:10.1109/CVPR.2005.581.

  • McKeon, R., & Russ, T. (2010). Employing region ensembles in a statistical learning framework for robust 3D facial recognition. In Fourth IEEE International Conference on Biometrics: Theory Applications and Systems (BTAS), 2010, pp. 1–7. IEEE.

  • Milnor, J. (1963). Morse theory. Princeton, NJ: Princeton University Press.

    MATH  Google Scholar 

  • Mokhtarian, F., & Mackworth, A. (1986). Scale-based description and recognition of planar curves and two-dimensional shapes. IEEE transactions on pattern analysis and machine intelligence, 8(1), 34–43.

    Article  Google Scholar 

  • Moon, H., & Phillips, P. J. (1998) The FERET verification testing protocol for face recognition algorithms. Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition, 1998 (pp. 48–53).

  • Moorthy, A. K., Mittal, A., Jahanbin, S., Grauman, K., Bovik, A. C. (2010). 3D Facial Similarity: Automatic Assessment versus Perceptual Judgements. In IEEE Fourth International Conference on Biometrics: Theory, Applications and Systems (BTAS, 2010).

  • Morgan, D., & Krouse, W. (2005). Biometric Identifiers and Border Security: 9/11 Commission Recommendations and Related, Issues.

  • Mpiperis, I., Malasiotis, S., & Strintzis, M. G. (2007). 3D face recognition by point signatures and iso-contours. In Proceedings of the Fourth IASTED International Conference on Signal Processing, Pattern Recognition, and Applications (pp. 328–332). Anaheim: ACTA Press.

  • Mpiperis, I., Malassiotis, S., & Strintzis, M. G. (2007). 3-D face recognition with the geodesic polar representation. Information Forensics and Security, IEEE Transactions on, 2(3), 537–547. doi:10.1109/TIFS.2007.902326.

    Article  Google Scholar 

  • Nagamine, T., Uemura, T., & Masuda, I. (1992). 3D facial image analysis for human identification. In Conference A: Computer Vision and Applications, Proceedings of the 11th IAPR International Conference on Pattern Recognition, 1992 (Vol. 1, pp. 324–327). doi:10.1109/ICPR.1992.201567.

  • Peura, M., & Iivarinen, J. (1997). Efficiency of simple shape descriptors. In C. Arcelli, L. P. Cordella, & G. Sanniti di Baja (Eds.), Aspects of Visual Form (pp. 443–451). Singapore: World Scientific.

  • Peyré, G., & Cohen, L. D. (2006). Geodesic remeshing using front propagation. International Journal of Computer Vision, 69(1), 145–156.

    Google Scholar 

  • Phillips, P., Scruggs, W., O’Toole, A., Flynn, P., Bowyer, K., Schott, C., et al. (2010). Frvt 2006 and ice 2006 large-scale experimental results. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5), 831–846.

    Article  Google Scholar 

  • Phillips, P. J., Flynn, P. J., Scruggs, T., Bowyer, K. W., Chang, J., Hoffman, K., Marques, J., Min, J., & Worek, W. (2005). Overview of the face recognition grand challenge. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2005. CVPR 2005. (Vol. 1, pp. 947–954).

  • Phillips, P. J., Grother, P. J., Micheals, R. J., Blackburn, D. M., Tabassi, E., & Bone, J. M. (2003). Face Recognition Vendor Test 2002. Tech. rep., National Institute of Standards and Technology. www.frvt.org.

  • Queirolo, C., Silva, L., Bellon, O., & Segundo, M. (2010). 3d face recognition using simulated annealing and the surface interpenetration measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(2), 206–219. doi:10.1109/TPAMI.2009.14.

    Article  Google Scholar 

  • Rosin, P. L. (2003). Measuring shape: ellipticity, rectangularity, and triangularity. Machine Vision and Applications, 14(3), 172–184.

    Google Scholar 

  • Ross, A. A., Nandakumar, K., & Jain, A. K. (2006). Handbook of multibiometrics. Berlin: Springer.

    Google Scholar 

  • Russ, T., Boehnen, C., & Peters, T. (2006). 3d face recognition using 3d alignment for pca. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006 (Vol. 2, pp. 1391–1398).

  • Samir, C., Srivastava, A., & Daoudi, M. (2006). Three-dimensional face recognition using shapes of facial curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(11), 1858–1863.

    Article  Google Scholar 

  • Sharma, S. (1995). Applied multivariate techniques. New York: Wiley.

    Google Scholar 

  • Sun, Y., & Abidi, M. A. (2001). Surface matching by 3D point’s fingerprint. In Proceedings of the Eighth IEEE International Conference on Computer Vision, 2001 (ICCV 2001) (Vol. 2, pp. 263–269). doi:10.1109/ICCV.2001.937634.

Download references

Acknowledgments

The authors thank Dr. Kenneth Castleman, ADIR, and IRIS International for not only providing the Texas 3-D Face Recognition Database of facial range and portrait images, but also for assisting the research financially. This work draws continued inspiration from Dr. Castleman’s ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sina Jahanbin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahanbin, S., Jahanbin, R. & Bovik, A.C. Passive Three Dimensional Face Recognition Using Iso-Geodesic Contours and Procrustes Analysis. Int J Comput Vis 105, 87–108 (2013). https://doi.org/10.1007/s11263-013-0631-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-013-0631-2

Keywords

Navigation