Skip to main content
Log in

When the a contrario approach becomes generative

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

The a contrario approach is a statistical, hypothesis testing based approach to detect geometric meaningful events in images. The general methodology consists in computing the probability of an observed geometric event under a noise model (null hypothesis) \(H_0\) and then declare the event meaningful when this probability is small enough. Generally, the noise model is taken to be the independent uniform distribution on the considered elements. Our aim in this paper will be to question the choice of the noise model: What happens if we “enrich” the noise model? How to characterize the noise models such that there are no meaningful events against them? Among them, what is the one that has maximum entropy? What does a sample of it look like? How is this noise model related to probability distributions on the elements that would produce, with high probability, the same detections? All these questions will be formalized and answered in two different frameworks: the detection of clusters in a set of points and the detection of line segments in an image. The general idea is to capture the perceptual information contained in an image, and then generate new images having the same visual content. We believe that such a generative approach can have applications for instance in image compression or for clutter removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abraham, I., Abraham, R., Desolneux, A., & Li-Thiao-Té, S. (2007). Significant edges in the case of non-stationary Gaussian noise. Pattern Recognition, 40(11), 3277–3291.

    Article  MATH  Google Scholar 

  • Ayer, M., Brunk, H., Ewing, G., Reid, W., & Silverman, E. (1955). An empirical distribution function for sampling with incomplete information. Annals of Mathematical Statistics, 26(4), 641–647.

    Article  MathSciNet  MATH  Google Scholar 

  • Blusseau, S., Lezama, J., Grompone von Gioi, R., Morel, J.M. & Randall, G. (2012). Comparing human and machine detection thresholds: An a-contrario model for non accidentalness. In: European Conference on Visual Perception.

  • Cao, F. (2004). Application of the Gestalt principles to the detection of good continuations and corners in image level lines. Computing and Visualisation in Science. Special Issue, Proceeding of the Algoritmy 2002 Conference 7, 3–13 (2004).

  • Cao, F., Delon, J., Desolneux, A., Musé, P., & Sur, F. (2007). A unified framework for detecting groups and application to shape recognition. Journal of Mathematical Imaging and Vision, 27(2), 91–119.

    Article  MathSciNet  MATH  Google Scholar 

  • Cover, T., & Thomas, J. (1991). Elements of information theory. New York: Wiley.

    Book  MATH  Google Scholar 

  • Delon, J., Desolneux, A., Lisani, J. L., & Petro, A. B. (2007). Automatic color palette. Inverse Problems and Imaging, 1(2), 265–287.

    Article  MathSciNet  MATH  Google Scholar 

  • Delon, J., Desolneux, A., Lisani, J. L., & Petro, A. B. (2007). A non parametric approach for histogram segmentation. IEEE Transactions on Image Processing, 16(1), 253–261.

    Article  MathSciNet  Google Scholar 

  • Desolneux, A., Moisan, L., & Morel, J. M. (2000). Meaningful alignments. International Journal of Computer Vision, 40(1), 7–23.

    Article  MATH  Google Scholar 

  • Desolneux, A., Moisan, L., & Morel, J. M. (2001). Edge detection by Helmholtz principle. Journal of Mathematical Imaging and Vision, 14(3), 271–284.

    Article  MATH  Google Scholar 

  • Desolneux, A., Moisan, L., & Morel, J. M. (2003). Computational Gestalts and perception thresholds. Journal of Physiology, 97(2–3), 311–324.

    Google Scholar 

  • Desolneux, A., Moisan, L., & Morel, J. M. (2003). A grouping principle and four applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(4), 508–513.

    Article  Google Scholar 

  • Desolneux, A., Moisan, L., & Morel, J. M. (2003). Maximal meaningful events and applications to image analysis. Annals of Statistics, 31(6), 1822–1851.

    Article  MathSciNet  MATH  Google Scholar 

  • Desolneux, A., Moisan, L., & Morel, J. M. (2008). From gestalt theory to image analysis: A probabilistic approach. Heidelberg: Springer.

    Book  Google Scholar 

  • von Gioi, R. G., Jakubowicz, J., Morel, J. M., & Randall, G. (2010). LSD: A fast line segment detector with a false detection control. IEEE Transactions on Pattern Analysis, 32(4), 722–732.

    Article  Google Scholar 

  • von Gioi, R. G., Jakubowicz, J., Morel, J. M., & Randall, G. (2012). LSD: A line segment detector. Image Processing on Line, 2, 35–55. doi:10.5201/ipol.2012.gjmr-lsd.

    Article  Google Scholar 

  • Grosjean, B., & Moisan, L. (2009). A-contrario detectability of spots in textured backgrounds. Journal of Mathematical Imaging and Vision, 33(3), 313–337.

    Article  MathSciNet  Google Scholar 

  • Harremoës, P. (2001). Binomial and Poisson distributions as maximum entropy distributions. IEEE Transactions on Information Theory, 47(5), 2039–2041.

    Article  MATH  Google Scholar 

  • von Helmholtz, H. (1999). Treatise on physiological optics. Bristol: Thoemmes Press.

    Google Scholar 

  • Igual, L., Preciozzi, J., Garrido, L., Almansa, A., Caselles, V., & Rougé, B. (2007). Automatic low baseline stereo in urban areas. Inverse Problems and Imaging, 1(2), 319–348.

    Article  MathSciNet  MATH  Google Scholar 

  • Kaas, R., & Buhrman, J. (1980). Mean, median and mode in binomial distributions. Statistica Neerlandica, 34, 13–18.

    Article  MathSciNet  MATH  Google Scholar 

  • Kato, H. & Harada, T. (2014). Image reconstruction from bag-of-visual-words. 2014 IEEE Conference on Computer Vision and Pattern Recognition (pp. 955–962). CVPR 2014, Columbus, OH, USA.

  • Lezama, J., Blusseau, S., Morel, J. M., Randall, G., & von Gioi, R. G. (2014). Psychophysics, gestalts and games. In G. Citti & A. Sarti (Eds.), Neuromathematics of vision (pp. 217–242)., Lecture Notes in Morphogenesis Berlin: Springer.

  • Lowe, D. (1985). Perceptual organization and visual recognition. Amsterdam: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Lowe, D. (1990). Visual recognition as probabilistic inference from spatial relations. In A. Blake & T. Troscianko (Eds.), AI and the eye (pp. 261–2793). London: Wiley.

    Google Scholar 

  • Moisan, L., & Stival, B. (2004). A probabilistic criterion to detect rigid point matches between two images and estimate the fundamental matrix. International Journal of Computer Vision, 57(3), 201–218.

    Article  Google Scholar 

  • Mumford, D., & Desolneux, A. (2010). Pattern theory : The stochastic analysis of real-world signals. Boca Raton: AK Peters—CRC Press.

    Google Scholar 

  • Musé, P., Sur, F., Cao, F., Gousseau, Y., & Morel, J. M. (2006). An a contrario decision method for shape element recognition. International Journal of Computer Vision, 69(3), 295–315.

    Article  Google Scholar 

  • Myaskouvskey, A., Gousseau, Y., & Lindenbaum, M. (2013). Beyond independence: An extension of the a contrario decision procedure. International Journal of Computer Vision, 101(1), 22–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Payton, M., Young, L., & Young, J. (1989). Bounds for the difference between median and mean of beta and negative binomial distributions. Metrika, 36, 347–354.

    Article  MathSciNet  MATH  Google Scholar 

  • Pérez, P., Gangnet, M., & Blake, A. (2003). Poisson image editing. ACM Transactions on Graphics (SIGGRAPH’03), 22(3), 313–318.

    Article  Google Scholar 

  • Veit, T., Cao, F., & Bouthemy, P. (2006). An a contrario decision framework for region-based motion detection. International Journal on Computer Vision, 68(2), 163–178.

    Article  Google Scholar 

  • Waterhouse, W. C. (1983). Do symmetric problems have symmetric solutions? The American Mathematical Monthly, 90(6), 378–387.

    Article  MathSciNet  MATH  Google Scholar 

  • Weinzaepfel, P., Jegou, H. & Pérez, P. (2011). Reconstructing an image from its local descriptors. In: The 24th IEEE Conference on Computer Vision and Pattern Recognition (pp. 337–344). CVPR 2011, Colorado Springs, CO, USA.

  • Witkin, A., & Tenenbaum, J. (1983). On the role of structure in vision. In A. Rosenfeld (Ed.), Human and Machine Vision (pp. 481–543). New York: Academic Press.

    Google Scholar 

  • Zhu, S. C. (1999). Embedding gestalt laws in Markov random fields. IEEE Transactions on pattern analysis and machine intelligence, 21(11), 1170–1187.

    Article  Google Scholar 

  • Zhu, S. C., Wu, Y. N., & Mumford, D. (1997). Minimax entropy principle and its application to texture modeling. Neural Computation, 9(8), 1627–1660.

    Article  Google Scholar 

  • Zhu, S. C., Wu, Y. N., & Mumford, D. (1998). Filters, random fields and maximum entropy (frame): Towards a unified theory for texture modeling. International Journal of Computer Vision, 27(2), 107–126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Desolneux.

Additional information

Communicated by M. Hebert.

Appendix 1

Appendix 1

Proof of Lemma 3

Proof

It is based on the fact that we consider here a symmetric function \(H_p\) (i.e. symmetric in the sense that it is invariant under any permutation of \(q_1,\ldots ,q_n\)) under a constraint that is also symmetric. We first notice that a point of local maximum of \(H_p(q_1,\ldots ,q_n)=-\sum _{i=1}^n q_i \log \frac{q_i}{p} + (1-q_i) \log \frac{1-q_i}{1-p}\) under the constraint \(C(q_1,\ldots ,q_n)\ge \eta \) (where \(\eta \in (0,1/2]\) and \(C(q_1,\ldots ,q_n)=\mathbb {P}[K\ge k_0]\), with \(K\) following a Poisson binomial distribution of parameters \(q_1,\ldots ,q_n\)) is necessarily achieved when \(C(q_1,\ldots ,q_n)=\eta \). Indeed if it is not the case then we will have a point \((q_1,\ldots ,q_n)\) of local maximum of \(H_p\) with \(C(q_1,\ldots ,q_n)>\eta \). Now, at least one the \(q_i\) is not equal to \(p\) (because \(B(n,k_0,p)<\eta \) by hypothesis) and therefore we can slightly modify it, still satisfying the constraint \(C(q_1,\ldots ,q_n)\ge \eta \) and increasing \(H_p\).

Let us now prove that \((\overline{q},\ldots ,\overline{q})\) with \(\overline{q}:=B_{n,k_0}^{-1}(\eta )\) is a point of local maximum of \(H_p\) under the constraint \(C(q_1,\ldots ,q_n)=\eta \). We consider smooth (at least \(C^2\)) curves \(t\mapsto q_i(t)\) defined for \(t\) real in a neighbourhood \(I\) of \(0\), and such that \(\forall t\in I\), \(C(q_1(t),\ldots ,q_n(t))=\eta \) and \(q_1(0)=\ldots = q_n(0)=\overline{q}\). Then we define for all \(t\in I\), \(h(t) = H_p(q_1(t),\ldots ,q_n(t))\) and we will compute \(h'(0)\) and \(h''(0)\). A simple computation leads to

$$\begin{aligned} h'(0) = - \left( \log \frac{\overline{q}}{1-\overline{q}} - \log \frac{p}{1-p}\right) \sum _{i=1}^n q'_i(0) \end{aligned}$$
(13)

and

$$\begin{aligned} h''(0)= & {} - \left( \log \frac{\overline{q}}{1-\overline{q}} - \log \frac{p}{1-p}\right) \sum _{i=1}^n q''_i(0) \nonumber \\&- \frac{1}{\overline{q}(1-\overline{q})} \sum _{i=1}^n q'_i(0)^2 . \end{aligned}$$
(14)

Now, since \(C(q_1(t),\ldots ,q_n(t))=\eta \) for all \(t\), and since \(C\) is symmetric, we get

$$\begin{aligned} \frac{\partial C}{\partial q_1}(\overline{q},\ldots ,\overline{q}) \sum _{i=1}^n q'_i(0) = 0 \end{aligned}$$
(15)

and

$$\begin{aligned}&\frac{\partial C}{\partial q_1}(\overline{q},\ldots ,\overline{q}) \sum _{i=1}^n q''_i(0)\nonumber \\&\quad + \frac{\partial ^2 C}{\partial q_1 \partial q_2}(\overline{q},\ldots ,\overline{q}) \sum _{i,j=1, i\ne j}^n q'_i(0) q'_j(0) \nonumber \\&\quad + \frac{\partial ^2 C}{\partial q_1^2}(\overline{q},\ldots ,\overline{q}) \sum _{i=1}^n q'_i(0)^2 = 0 . \end{aligned}$$
(16)

To compute the partial derivatives of \(C\), we go back to its definition. Indeed \(C\) is defined by: \(C(q_1,\ldots ,q_n)=\mathbb {P}[Y_1+\ldots +Y_n\ge k_0]\) where the \(Y_i\) are independent Bernoulli random variables with respective parameter \(q_i\). We can then develop the probability term and rewrite \(C\) as

$$\begin{aligned} C(q_1,\ldots ,q_2)= & {} q_1 ( \mathbb {P}[Y_2+\ldots +Y_n\ge k_0-1] \\&- \mathbb {P}[Y_2+\ldots +Y_n\ge k_0])\\&+ \mathbb {P}[Y_2+\ldots +Y_n\ge k_0] \end{aligned}$$

and also

$$\begin{aligned} C(q_1,\ldots ,q_2)= & {} q_1 q_2 ( P_2 - 2 P_1 + P_0 ) \\&+ (q_1+q_2) (P_1 - P_0) + P_0 , \end{aligned}$$

where \(P_2:=\mathbb {P}[Y_3+\ldots +Y_n\ge k_0-2]\) ; \(P_1:=\mathbb {P}[Y_3+\ldots +Y_n\ge k_0-1]\) and \(P_0:=\mathbb {P}[Y_3+\ldots +Y_n\ge k_0]\). These functions depend only on \(q_3, \ldots , q_n\). This allows us to easily compute the partial derivatives of \(C\) at the point \((\overline{q},\ldots ,\overline{q})\) and get

$$\begin{aligned}&\frac{\partial C}{\partial q_1}(\overline{q},\ldots ,\overline{q}) = \frac{(n-1)!}{(k_0-1)! (n-k_0)!} \overline{q}^{k_0-1} (1-\overline{q})^{n-k_0} \, \, ,\\&\frac{\partial ^2 C}{\partial q_1^2} = 0 \end{aligned}$$

and

$$\begin{aligned} \frac{\partial ^2 C}{\partial q_1 \partial q_2}= & {} \frac{(n-2)!}{(k_0-1)! (n-k_0)!} \overline{q}^{k_0-2} (1-\overline{q})^{n-k_0-1} (k_0\\&-1 - (n-1)\overline{q} ) . \end{aligned}$$

Then from (15), we deduce that

$$\begin{aligned} \sum _{i=1}^n q'_i(0) = 0 , \end{aligned}$$

and as a first consequence we thus have, from (13), that \(h'(0)=0\). Then using (16), the values of the partial derivatives of \(C\) and the fact that \(\sum _{j\ne i} q'_j(0) = -q'_i(0)\), we get that (14) gives:

$$\begin{aligned} h''(0)= & {} - \frac{\overline{q}}{1-\overline{q}} \left( 1 + (\frac{k_0-1}{n-1} -\overline{q}) (\log \frac{\overline{q}}{1-\overline{q}}\right. \\&\left. - \log \frac{p}{1-p})\right) \sum _{i=1}^n q'_i(0)^2 . \end{aligned}$$

By definition of \(\overline{q}\), we have \(B(n,k_0,\overline{q})=\eta \le \frac{1}{2}\) (by hypothesis). Then by Lemma 1, and more precisely by Equation (7) in its proof, we get

$$\begin{aligned}&1 + \left( \frac{k_0-1}{n-1} -\overline{q}\right) \left( \log \frac{\overline{q}}{1-\overline{q}} - \log \frac{p}{1-p}\right) \\&\quad \ge 1 + \frac{1}{n+1} \log \frac{p}{1-p} > 0 \end{aligned}$$

by hypothesis. Finally, we have obtained that

$$\begin{aligned} h'(0)=0 \text { and } h''(0) < 0 , \end{aligned}$$

showing that the point \((\overline{q},\ldots ,\overline{q})\) is a local maximum of \(H_p\) under the constraint \(C\ge \eta \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desolneux, A. When the a contrario approach becomes generative. Int J Comput Vis 116, 46–65 (2016). https://doi.org/10.1007/s11263-015-0825-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-015-0825-x

Keywords

Navigation