Skip to main content

Advertisement

Log in

A Riemannian Bayesian Framework for Estimating Diffusion Tensor Images

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Diffusion tensor magnetic resonance imaging (DT-MRI) is a non-invasive imaging technique allowing to estimate the molecular self-diffusion tensors of water within surrounding tissue. Due to the low signal-to-noise ratio of magnetic resonance images, reconstructed tensor images usually require some sort of regularization in a post-processing step. Previous approaches are either suboptimal with respect to the reconstruction or regularization step. This paper presents a Bayesian approach for simultaneous reconstruction and regularization of DT-MR images that allows to resolve the disadvantages of previous approaches. To this end, estimation theoretical concepts are generalized to tensor valued images that are considered as Riemannian manifolds. Doing so allows us to derive a maximum a posteriori estimator of the tensor image that considers both the statistical characteristics of the Rician noise occurring in MR images as well as the nonlinear structure of tensor valued images. Experiments on synthetic data as well as real DT-MRI data validate the advantage of considering both statistical as well as geometrical characteristics of DT-MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Diffusion tensor images belong to the more general class of tensor-valued images where tensors might represent different information, e.g. orientation in case of structure tensors.

  2. cf. Helgason (1978) for an overview about Riemannian manifolds.

  3. Here we assume the curve to be in U. Otherwise the curve has to be divided into several parts each represented by its own chart and the overall curve length is obtained by summing up the curve length of its parts.

  4. If not otherwise stated we use the standard matrix elements as global coordinates such that the corresponding chart becomes the identity. In favor of uncluttered notation we make no difference between manifold elements and their matrix representation.

  5. We assume the exponential as well as the logarithmic map to be globally one to one as it is the case for the tensor manifold considered in this paper.

  6. Some medical NMR imaging systems apply multiple, e.g. \(\iota \) parallel working signal detectors to speed up the recording process (Roemer et al. 1990). As a result one obtains \(\iota \) complex valued NMR images corrupted by zero mean additive Gaussian noise having all the same standard deviation (Constantinides et al. 1997; Koay and Basser 2006). The NMR magnitude image is obtained by \(S_j(x_k)= \sqrt{\sum _{i=1}^\iota I_{j k i}^2+R_{j k i}^2}\) and follows a non-central Chi distribution (Constantinides et al. 1997) containing the Rician distribution as a special case (\(\iota =1\)). The likelihood model for multiple detector systems can straightforwardly be obtained from our model by exchanging the Rician distribution with the non-central Chi distribution.

  7. The Rician distribution becomes the Rayleigh distribution in that case.

  8. except for the pathologic cases, i.e. \(\hat{A}_{0 m}=0\) and \(S_{j m}=0\) for all m and j.

  9. Not to be confused with the elements of the diffusion tensor of the DTI.

  10. If an index variable occurs at least twice, it is understood to sum over its full range.

  11. The matrix entries parameterize the positive definite tensor.

  12. Lapack is freely-available at http://www.netlib.org/lapack/.

  13. The analytical solutions of matrix functions are in fact exact. However, due to inevitable numerical inaccuracies occurring in their practical computation its sensitiveness to these inaccuracies have to be taken under consideration.

  14. A detailed derivation of (84) can be found in the supplementary material.

  15. Note that there exists no energy formulation for nonlinear anisotropic diffusion, hence no MRF can be constructed.

  16. cmp. with Menzel (2002) for a detailed description of the imaging system and reconstruction method.

  17. We use the shorthand naming convention ‘noise-model’—‘regularization geometry’, thus e.g. ‘Gaussian–Riemannian’ is the Gaussian noise assumption based method of Lenglet et al. (2006) combined with our isotropic nonlinear Riemannian spatial regularization.

References

  • Alexander, A . L., Lee, J . E., Lazar, M., & Field, A . S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics, 4(3), 316–329.

    Article  Google Scholar 

  • Andersen, A. H. (1996). The Rician distribution of noisy MRI data. Magnetic Resonance in Medicine, 36, 331–333.

    Article  Google Scholar 

  • Andersson, J. L. (2008). Maximum a posteriori estimation of diffusion tensor parameters using a Rician noise model: Why, how and but. Neuroimage, 42(4), 1340–56.

    Article  Google Scholar 

  • Arsigny, V., Fillard, P., Pennec, X., & Ayache, N. (2005). Fast and simple calculus on tensors in the log-Euclidean framework. In Proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention’, pp. 115–122.

  • Arsigny, V., Fillard, P., Pennec, X., & Ayache, N. (2006). Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic Resonance in Medicine, 56(2), 411–421.

    Article  Google Scholar 

  • Atkinson, C., & Mitchell, A. (1981). Raos distance measure. The Indian Journal of Statistics, 4, 345–365.

    MathSciNet  MATH  Google Scholar 

  • Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance, Series B, 111(3), 209–219.

    Article  Google Scholar 

  • Batchelor, P. G., Moakher, M., Atkinson, D., Calamante, F., & Connelly, A. (2005). A rigorous framework for diffusion tensor calculus. Magnetic Resonance in Medicine, 53(1), 221–225.

    Article  Google Scholar 

  • Bernstein, M. A., Thomasson, D. M., & Perman, W. H. (1989). Improved detectability in low signal-to-noise ratio magnetic resonance images by means of a phase-corrected real reconstruction. Medical Physics, 15(5), 813–817.

    Article  Google Scholar 

  • Bihan, D. L., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., & Laval-Jeantet, M. (1986). MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders. Radiology, 161(2), 401–407.

    Article  Google Scholar 

  • Bihan, D. L., Mangin, J., Poupon, C., Clark, C., Pappata, S., Molko, N., et al. (2001). Diffusion tensor imaging: Concepts and applications. Journal of Magnetic Resonance Imaging, 13(4), 534–546.

    Article  Google Scholar 

  • Burgeth, B., Didas, S., Florack, L., & Weickert, J. (2007). A generic approach to the filtering of matrix fields with singular PDEs. In Scale-Space and Variational Methods in Image Processing, 4485, 556–567.

    MATH  Google Scholar 

  • Burgeth, B., Didas, S., & Weickert, J. (2009). A general structure tensor concept and coherence-enhancing diffusion filtering for matrix fields. Visualization and Processing of Tensor Fields, Mathematics and Visualization Springer, Berlin (pp. 305–323).

  • Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6), 679–698.

    Article  Google Scholar 

  • Castano-Moraga, C. A., Lenglet, C., Deriche, R., & Ruiz-Alzola, J. (2007). A Riemannian approach to anisotropic filtering of tensor fields. Signal Processing, 87(2), 263–276.

    Article  MATH  Google Scholar 

  • Chefd’hotel, C., Tschumperlé, D., Deriche, R., & Faugeras, O. (2004). Regularizing flows for constrained matrix-valued images. Journal of Mathematical Imaging and Vision, 20(1), 147–162.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, B., & Hsu, E. W. (2005). Noise removal in magnetic resonance diffusion tensor imaging. Magnetic Resonance in Medicine, 54(2), 393–401.

    Article  Google Scholar 

  • Cohen, R. (1985). The immersion conjecture for differentiable manifolds. The Annals of Mathematics, 122, 237–328.

    Article  MathSciNet  MATH  Google Scholar 

  • Constantinides, C., Atalar, E., & McVeigh, E. (1997). Signal-to-noise measurements in magnitude images from NMR phased arrays. Magnetic Resonance in Medicine 38, 852–857. Erratum in Magn. Reson. Med., 52, (2004), p. 219.

  • Coulon, O., Alexander, D. C., & Arridge, S. R. (2001). A regularization scheme for diffusion tensor magnetic resonance images. In Proceedings of the 17th International Conference on Information Processing in Medical Imaging, pp. 92–105.

  • Courant, R., & Hilbert, D. (1953). Methods of mathematical physics (Vol. 1). New York: Interscience.

    MATH  Google Scholar 

  • Cox, R., & Glen, D. (2006). Efficient, robust, nonlinear, and guaranteed positive definite diffusion tensor estimation. International Society for Magnetic Resonance in Medicine, (p. 349).

  • Dunham, W. (1990). Cardano and the solution of the cubic. Journey through Genius: The Great Theorems of Mathematics, (pp. 133–154).

  • Edelstein, W., Bottomley, P., & Pfeifer, L. (1984). A signal-to-noise calibration procedure for NMR imaging systems. Medical Physics, 11(2), 180–185.

    Article  Google Scholar 

  • Edelstein, W., Bottomley, P., & Smith, H. H. L. (1983). Signal, noise, and contrast in NMR imaging. Journal of Computer Assisted Tomography, 7(3), 391–401.

    Article  Google Scholar 

  • Edlow, B. L., Copen, W. A., Izzy, S., Bakhadirov, K., van der Kouwe, A., Glenn, M. B., et al. (2016). Diffusion tensor imaging in acute-to-subacute traumatic brain injury: A longitudinal analysis. BMC Neurology, 16(1), 1–11.

    Article  Google Scholar 

  • Feddern, C., Weickert, J., Burgeth, B., & Welk, M. (2006). Curvature-driven PDE methods for matrix-valued images. International Journal of Computer Vision, 69(1), 93–107.

    Article  MATH  Google Scholar 

  • Fillard, P., Arsigny, V., Ayache, N. & Pennec, X. (2005). A Riemannian framework for the processing of tensor-valued images. In First International Workshop of Deep Structure, Singularities, and Computer Vision, pp. 112–123.

  • Fillard, P., Pennec, X., Arsigny, V., & Ayache, N. (2007). Clinical DT-MRI estimation, smoothing, and fiber tracking with log-Euclidean metrics. IEEE Transaction on Medical Imaging, 26(11), 1472–1482.

    Article  Google Scholar 

  • Fletcher, P. T., & Joshi, S. (2004). Principle geodesic analysis on symmetric spaces: Statistics of diffusion tensors. Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis, ECCV Workshops CVAMIA and MMBIA 2004, pp. 87–98.

  • Fletcher, P. T., & Joshi, S. (2007). Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Processing, 87(2), 250–262.

    Article  MATH  Google Scholar 

  • Florack, L., & Fuster, A. (2014). Riemann-Finsler geometry for diffusion weighted magnetic resonance imaging. In C.-F. Westin, A. Vilanova, & B. Burgeth (Eds.), Visualization and processing of tensors and higher order descriptors for multi-valued data’, mathematics and visualization (pp. 189–208). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Förstner, W., & Moonen, B. (1999). A metric for covariance matrices, Techical Report, Number 1999. Department of Geodesy and Geoinformatics, Stuttgart University.

  • Golub, G., & Loan, C. V. (1996). Matrix computations (3rd ed.). Baltimore, MD: Johns Hopkins.

    MATH  Google Scholar 

  • Gudbjartsson, H., & Patz, S. (1995). The Rician distribution of noisy MRI data. Magnetic Resonance in Medicine, 34, 910–914.

    Article  Google Scholar 

  • Gur, Y., Pasternak, O., & Sochen, N. (2009). Fast GL(n)-invariant framework for tensors regularization. International Journal of Computer Vision, 85(3), 211–222.

    Article  Google Scholar 

  • Gur, Y., Pasternak, O., & Sochen, N. (2012). SPD tensors regularization via Iwasawa decomposition. In L. Florack, R. Duits, G. Jongbloed, M.-C. Lieshout, & L. Davies (Eds.), Mathematical methods for signal and image analysis and representation’, Vol. 41 of computational imaging and vision (pp. 83–100). London: Springer.

    Google Scholar 

  • Gur, Y., & Sochen, N. (2005). Denoising tensors via Lie group flows. In Variational Geometric, and Level Set Methods in Computer Vision, 3752, 13–24.

    Article  MATH  Google Scholar 

  • Gur, Y., & Sochen, N. A. (2007). Fast invariant Riemannian DT-MRI regularization. In Proc. of IEEE Computer Society Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA), Rio de Janeiro, Brazil, pp. 1–7.

  • Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (1986). Robust statistics: The approach based on influence functions. New York: Wiley.

    MATH  Google Scholar 

  • Hartmann, S. (2003). Computational aspects of the symmetric eigenvalue problem of second order tensors. Technische Mechanik, 23(2–4), 283–294.

    Google Scholar 

  • Hasan, K., Basser, P., Parker, D., & Alexander, A. (2001). Analytical computation of the eigenvalues and eigenvectors in DT-MRI. Journal of Magnetic Resonance, 156(3), 41–47.

    Article  Google Scholar 

  • Helgason, S. (1978). Differential geometry Lie groups and symmetric spaces. New York: Academic press.

    MATH  Google Scholar 

  • Henkelman, R. (1985). Measurement of signal intensities in the presence of noise in MR images, Medical Physics, 12(2), 232–233. Erratum in, 13, (1986) 544.

  • Hoult, D., & Richards, R. (1976). The SNR of the NMR experiment. Journal of Magnetic Resonance, 24, 71–85.

    Google Scholar 

  • Huber, P. J. (1981). Robust statistics. Wiley series in propability and mathematical statistics. New York: Wiley.

    Google Scholar 

  • Jeong, H. K., & Anderson, A. W. (2008). Characterizing fiber directional uncertainty in diffusion tensor MRI. Magnetic Resonance in Medicine, 60(6), 1408–1421.

    Article  Google Scholar 

  • Jermyn, I. H. (2005). Invariant Bayesian estimation on manifolds. Annals of Statistics, 33(2), 583–605.

    Article  MathSciNet  MATH  Google Scholar 

  • Karcher, H. (1977). Riemannian center of mass and mollifier smoothing. Communications on Pure and Applied Mathematics, 30, 509–541.

  • Kay, S. M. (1993). Fundamentals of statistical processing, volume I: Estimation theory. New Jerssey: Prentice Hall Signal Processing Series.

    MATH  Google Scholar 

  • Koay, C. G., & Basser, P. J. (2006). Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. Journal of Magnetic Resonance, 179(3), 317–322.

    Article  Google Scholar 

  • Krajsek, K., Menzel, M. I., & Scharr, H. (2009). Riemannian Bayesian estimation of diffusion tensor images. In IEEE International Conference on Computer Vision, pp. 2327–2334.

  • Krajsek, K., Menzel, M. I., Zwanger, M., & Scharr, H. (2008). Riemannian anisotropic diffusion for tensor valued images. In European Conference on Computer Vision, pp. 326–339.

  • Krajsek, K., & Mester, R. (2006). The edge preserving Wiener filter for scalar and tensor valued images. In Proceedings of the 28th DAGM-Symposium, pp. 91–100.

  • Krajsek, K. & Scharr, H. (2012). A Riemannian approach for estimating orientation distribution function (ODF) images from high-angular resolution diffusion imaging (HARDI), In IEEE Conference on Computer Vision and Pattern Recognition, pp. 1019–1026.

  • Landman, B. A., Bazin, P. L., & Prince, J. L. (2007a). Diffusion tensor estimation by maximizing Rician likelihood. In IEEE International Conference on Computer Vision, pp. 1–8.

  • Landman, B., Bazin, P., & Prince, J. (2007b). Robust diffusion tensor estimation by maximizing Rician likelihood, In ‘MMBIA08’, pp. 1–8.

  • Lenglet, C., Rousson, M., Deriche, R., & Faugeras, O. (2006). Statistics on the manifold of multivariate normal distributions: Theory and application to diffusion tensor MRI processing. Journal of Mathematical Imaging and Vision, 25(3), 423–444.

    Article  MathSciNet  Google Scholar 

  • Lenglet, C., Rousson, M., Deriche, R., Faugeras, O., Lehericy, S., & Ugurbil, K. (2005). A Riemannian approach to diffusion tensor images segmentation. In ‘IPMI’, pp. 591–602.

  • Libove, J., & Singer, J. R. (1980). Resolution and signal-to-noise relationships in NMR imaging in the human body. Journal of Physics: Section E: Scientific Instruments, 13, 38–43.

    Article  Google Scholar 

  • Macovski, A. (1996). Noise in MRI. Magnetic Resonance in Medicine, 36, 494–497.

    Article  Google Scholar 

  • Martin-Fernandez, M., San-Jose, R., Westin, C.-F., & Alberola-Lopez, C. (2003). A novel Gauss-Markov random field approach for regularization of diffusion tensor maps. In Ninth International Conference on Computer Aided Systems Theory (EUROCAST’03), pp. 506–517.

  • McGibney, G., & Smith, M. (1993). An unbiased signal-to-noise ratio measure for magnitude resonance images. Medical Physics, 20(4), 1077–1078.

    Article  Google Scholar 

  • Melonakos, J., Mohan, V., Niethammer, M., Smith, K., Kubicki, M., & Tannenbaum, A. (2007). Finsler tractography for white matter connectivity analysis of the cingulum bundle. International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 36–43). Berlin, Heidelberg: Springer.

  • Menzel, M. I. (2002). Multi-nuclear NMR on contaminated Sea Ice, Ph.D. Thesis, RWTH Aachen, Germany.

  • Moakher, M. (2005). A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM Journal on Matrix Analysis and Applications, 26(3), 735–747.

    Article  MathSciNet  MATH  Google Scholar 

  • Morman, K. (1986). The generalized strain measure with application to nonhomogeneous deformations in rubber-like solids. Journal of Applied Mechanics, 53, 726–728.

    Article  Google Scholar 

  • Müller, M. J., Greverus, D., Weibrich, C., Dellani, P. R., Scheurich, A., Stoeter, P., et al. (2007). Diagnostic utility of hippocampal size and mean diffusivity in amnestic MCI. Neurobiology of Aging, 28(3), 398–403.

    Article  Google Scholar 

  • Nowak, R. (1999). Wavelet-based Rician noise removal for magnetic resonance imaging. IEEE Transactions on Image Processing, 8(10), 1408–1419.

    Article  Google Scholar 

  • Ortendahl, D., Crooks, L., & Kaufman, L. (1983). A comparison of the noise characteristics of projection reconstruction and two-dimensional Fourier transformations in NMR imaging. IEEE Transactions on Nuclear Science, 30(1), 692–696.

    Article  Google Scholar 

  • Ortendahl, D., Hylton, N. M., Kaufman, L., & Crooks, L. (1984). Resolution and signal-to-noise relationships in NMR imaging in the human body. Magnetic Resonance in Medicine, 1, 316–338.

    Article  Google Scholar 

  • Pennec, X. (1999). Probabilities and statistics on Riemannian manifolds: Basic tools for geometric measurements. In IEEE Workshop on Nonlinear Signal and Image Processing (NSIP99), pp. 194–198.

  • Pennec, X. (2006). Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. Journal of Mathematical Imaging and Vision, 25(1), 127–154.

    Article  MathSciNet  Google Scholar 

  • Pennec, X., Fillard, P., & Ayache, N. (2006). A Riemannian framework for tensor computing. International Journal of Computer Vision, 66(1), 41–66.

    Article  MathSciNet  MATH  Google Scholar 

  • Rao, C. (1945). Information and the accuracy attainable in the estimation of statistical parameters. Journal of the Royal Society of Statistics, 37, 81–89.

    MathSciNet  MATH  Google Scholar 

  • Rice, S. (1944). Mathematical analysis of random noise, Bell System Technical Journal (Reprinted by N. Wax Selected Papers on Noise and Stochastic Processes, Dover Publications 1954) 23 and 24.

  • Roemer, P., Edelstein, W., Hayes, C., Souza, S., & Mueller, O. (1990). The NMR phased array. Magnic Resonance in Medicine, 16, 192–225.

    Article  Google Scholar 

  • Scharr, H. (2000). Optimal operators in digital image processing. Ph.D Thesis, Interdisciplinary Center for Scientific Computing, University of Heidelberg.

  • Scharr, H., Black, M. J., & Haussecker, H. W. (2003). Image statistics and anisotropic diffusion. IEEE International Conference on Computer Vision, pp. 840–847.

  • Scheenen, T. W. J., Vergeldt, F. J., Heemskerk, A. M., & As, H. V. (2007). Intact plant magnetic resonance imaging to study dynamics in long-distance sap flow and flow-conducting surface area. Plant Physiology, 144(2), 1157–1165.

    Article  Google Scholar 

  • den Sijbers, J., & Dekker, A. J. (2004). Maximum likelihood estimation of signal amplitude and noise variance from MR data. Magnetic Resonance in Medicine, 51(3), 586–594.

    Article  Google Scholar 

  • Sijbers, J., den Dekker, A., Scheunders, P., & Dyck, D. V. (1998). Maximum-likelihood estimation of Rician distribution parameters. IEEE Transactions on Medical Imaging, 17(3), 357–361.

    Article  Google Scholar 

  • Sijbers, J., Poot, D., den Dekker, A. J., & Pintjens, W. (2007). Automatic estimation of the noise variance from the histogram of a magnetic resonance image. Physics in Medicicine and Biology, 52, 1335–1348.

    Article  Google Scholar 

  • Skovgaard, L. (1981). A Riemannian geometry of the multivariate normal model, Technical Report 81/3. Statistical Research Unit, Danish Medical Research Council, Danish Social Science Research Council.

  • Stejskal, E., & Tanner, J. (1965). Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. Journal of Chemical Physics, 42, 288–292.

    Article  Google Scholar 

  • Tarantola, A. (2005). Inverse problem theory and model parameter estimation (1st ed.). New Delhi: SIAM.

    Book  MATH  Google Scholar 

  • Tarantola, A., & Valette, B. (1982). Inverse problems = quest for information. Journal of Geophysics, 50, 159–170.

    Google Scholar 

  • Tschumperlé, & D. Deriche, R. (2001). Diffusion tensor regularization with constraints preservation. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 948–953.

  • Tschumperlé, D., & Deriche, R. (2002). Orthonormal vector sets regularization with PDEs and applications. International Journal of Computer Vision, 50(3), 237–252.

    Article  MATH  Google Scholar 

  • Wang, Y., & Lei, T. (1994). Statistical analysis of MR imaging and its applications in image modeling. In Proceedings of the IEEE International Conference on Image Processing and Neural Networks, pp. 866–870.

  • Weickert, J. (1996). Anisotropic diffusion in image processing. Ph.D. Thesis, University of Kaiserslautern.

  • Weickert, J. (1999a). Coherence-enhancing diffusion filtering. International Journal of Computer Vision, 31(2–3), 111–127.

    Article  Google Scholar 

  • Weickert, J. (1999b). Nonlinear diffusion filtering. Handbook of Computer Vision and Applications, pp. 423–450.

  • Weickert, J., & Brox, T. (2002). Diffusion and regularization of vector- and matrix-valued images. Inverse Problems, Image Analysis, and Medical Imaging Contemporary Mathematics, pp. 251–268.

  • Westin, C., & Knutsson, H. (2003). Tensor field regularization using normalized convolution. Computer Aided Systems Theory, pp. 564–572.

  • Whitney, H. (1944). The self-intersections of a smooth n-manifold in 2n-space. Annals of Mathematics, 45, 220–246.

    Article  MathSciNet  MATH  Google Scholar 

  • Wood, J., & Johnson, M. (1999). Wavelet packet denoising of magnetic resonance images: Importance of Rician noise at low SNR. Magnetic Resonance in Medicine, 41(3), 631–635.

    Article  Google Scholar 

  • Zéraï, M., & Moakher, M. (2007a). Riemannian curvature-driven flows for tensor-valued data. In International Conference on Scale Space and Variational Methods in Computer Vision, pp. 592–602.

  • Zéraï, M., & Moakher, M. (2007b). Riemannian level-set methods for tensor-valued data, CoRR.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Krajsek.

Additional information

Communicated by K. Ikeuchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krajsek, K., Menzel, M.I. & Scharr, H. A Riemannian Bayesian Framework for Estimating Diffusion Tensor Images. Int J Comput Vis 120, 272–299 (2016). https://doi.org/10.1007/s11263-016-0909-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-016-0909-2

Keywords

Navigation