Skip to main content
Log in

No-Reference Image Quality Assessment for Image Auto-Denoising

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

This paper proposes two new non-reference image quality metrics that can be adopted by the state-of-the-art image/video denoising algorithms for auto-denoising. The first metric is proposed based on the assumption that the noise should be independent of the original image. A direct measurement of this dependence is, however, impractical due to the relatively low accuracy of existing denoising method. The proposed metric thus tackles the homogeneous regions and highly-structured regions separately. Nevertheless, this metric is only stable when the noise level is relatively low. Most denoising algorithms reduce noise by (weighted) averaging repeated noisy measurements. As a result, another metric is proposed for high-level noise based on the fact that more noisy measurements will be required when the noise level increases. The number of measurements before converging is thus related to the quality of noisy images. Our patch-matching based metric proposes to iteratively find and add noisy image measurements for averaging until there is no visible difference between two successively averaged images. Both metrics are evaluated on LIVE2 (Sheikh et al. in LIVE image quality assessment database release 2: 2013) and TID2013 (Ponomarenko et al. in Color image database tid2013: Peculiarities and preliminary results: 2005) data sets using standard Spearman and Kendall rank-order correlation coefficients (ROCC), showing that they subjectively outperforms current state-of-the-art no-reference metrics. Quantitative evaluation w.r.t. different level of synthetic noisy images also demonstrates consistently higher performance over state-of-the-art non-reference metrics when used for image denoising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bentley, J. (1975). Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9), 509–517.

    Article  MATH  Google Scholar 

  • Buades, A., Coll, B., & Morel, J. (2005). A non-local algorithm for image denoising. In CVPR (pp. 60–65).

  • Buades, A., Coll, B., & Morel, J. (2011). Self-similarity-based image denoising. CACM, 54(5), 109–117.

    Article  Google Scholar 

  • Chen, G.H., Yang, C.L., & Xie, S.L. (2006). Gradient-based structural similarity for image quality assessment. In ICIP (pp. 2929–2932).

  • Dabo, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image denoising by sparse 3-d transform-domain collaborative filtering. TIP, 16(8), 2080–2095.

    MathSciNet  Google Scholar 

  • Ferzli, R., & Karam, L. J. (2009). A no-reference objective image sharpness metric based on the notion of just noticeable blur. TIP, 18(4), 717–728.

    MathSciNet  MATH  Google Scholar 

  • Girod, B. (1993). What’s wrong with mean-squared error? In A. B. Watson (Ed.), Digital images and human vision (pp. 207–220). Cambridge: MIT Press.

    Google Scholar 

  • He, L., Tao, D., Li, X., & Gao, X. (2012). Sparse representation for blind image quality assessment. In CVPR (pp. 1146–1153).

  • Kong, X., Li, K., Yang, Q., Liu, W., & Yang, M.-H. (2013) A new image quality metric for image auto-denoising. In ICCV (pp 2888–2895).

  • Mittal, A., Moorthy, A., & Bovik, A. (2012). No-reference image quality assessment in the spatial domain. TIP, 21(12), 4695–4708.

    MathSciNet  MATH  Google Scholar 

  • Narwaria, M., & Lin, W. (2012). SVD-based quality metric for image and video using machine learning. SMC-B, 42(2), 347–364.

    Google Scholar 

  • Paris, S., & Durand, F. (2009). A fast approximation of the bilateral filter using a signal processing approach. International Journal of Computer Vision, 81(1), 24–52.

    Article  Google Scholar 

  • Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe, H., & Toyama, K. (2004). Digital photography with flash and no-flash image pairs. ACM Transactions on Graphics (TOG), 23(3), 664–672.

    Article  Google Scholar 

  • Ponomarenko, N., Ieremeiev, O., Lukin, V., Egiazarian, K., Jin, L., Astola, J., Vozel, B., Chehdi, K., Carli, M., Battisti, F., & Kuo, C.-C.J. (2013). Color image database tid2013: Peculiarities and preliminary results (pp. 106–111).

  • Ramani, S., Blu, T., & Unser, M. (2008). Monte-carlo sure: A black-box optimization of regularization parameters for general denoising algorithms. IEEE Transactions on Image Processing, 17, 1540–1554.

    Article  MathSciNet  Google Scholar 

  • Sheikh, H., Wang, Z., Cormack, L., & Bovik, A. (2005). LIVE image quality assessment database release 2.

  • Shnayderman, A., Gusev, A., & Eskicioglu, A. (2006). An SVD-based grayscale image quality measure for local and global assessment. TIP, 15(2), 422–429.

    Google Scholar 

  • Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution. The Annals of Statistics, 9(6), 1135–1151.

    Article  MathSciNet  MATH  Google Scholar 

  • Takeda, H., Farsiu, S., & Milanfar, P. (2007). Kernel regression for image processing and reconstruction. TIP, 16(2), 349–399.

    MathSciNet  Google Scholar 

  • Tang, H., Joshi, N., & Kapoor, A. (2014). Blind image quality assessment using semi-supervised rectifier networks. In CVPR (pp. 2877–2884).

  • Tasdizen, T. (2008) Principal components for non-local means image denoising. In ICIP (pp. 1728–1731).

  • Wang, Z., Sheikh, H., & Bovik, A. (2002). No-reference perceptual quality assessment of JPEG compressed images. In ICIP (pp. 477–480).

  • Wang, Z., Simoncelli, E., & Bovik, A. (2003). Multiscale structural similarity for image quality assessment. In Asilomar conference on signals, systems and computers (pp. 1398–1402)

  • Wang, Z., & Bovik, A. C. (2002). A universal image quality index. SPL, 9(3), 81–84.

    Google Scholar 

  • Wang, Z., & Bovik, A. (2009). Mean squared error: Love it or leave it? A new look at signal fidelity measures. Signal Processing Magazine, 26(1), 98–117.

    Article  Google Scholar 

  • Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural smilarity. TIP, 13(4), 600–612.

    Google Scholar 

  • Wang, Z., & Li, Q. (2011). Information content weighting for perceptual image quality assessment. TIP, 20(5), 1185–1198.

    MathSciNet  MATH  Google Scholar 

  • Xiao, J., Hays, J., Ehinger, K., Oliva, A., & Torralba, A. (2010) Sun database: Large-scale scene recognition from abbey to zoo. In CVPR.

  • Ye, P., Kumar, J., Kang, L., & Doermann, D. (2012). Unsupervised feature learning framework for no-reference image quality assessment. In CVPR (pp. 1098–1105).

  • Zhu, X., & Milanfar, P. (2010). Automatic parameter selection for denoising algorithms using a no-reference measure of image content. TIP, 19(12), 3116–3132.

    MathSciNet  MATH  Google Scholar 

  • Zhu, J., & Wang, N. (2012). Image quality assessment by visual gradient similarity. TIP, 21(3), 919–933.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingxiong Yang.

Additional information

Communicated by Srinivasa Narasimhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, X., Yang, Q. No-Reference Image Quality Assessment for Image Auto-Denoising. Int J Comput Vis 126, 537–549 (2018). https://doi.org/10.1007/s11263-017-1054-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-017-1054-2

Keywords

Navigation