Skip to main content
Log in

H-SegMed: A Hybrid Method for Prostate Segmentation in TRUS Images via Improved Closed Principal Curve and Improved Enhanced Machine Learning

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Prostate segmentation is an important step in prostate volume estimation, multi-modal image registration, and patient-specific anatomical modeling for surgical planning and image-guided biopsy. Manual delineation of the prostate contour is time-consuming and prone to inter- and intra-observer variability. Accurate prostate segmentation in transrectal ultrasound images is particularly challenging due to the ambiguous boundary between the prostate and neighboring organs, the presence of shadow artifacts, heterogeneous intra-prostate image intensity, and inconsistent anatomical shapes. Therefore, in this study, we propose a novel hybrid segmentation method (H-SegMed) for accurate prostate segmentation in TRUS images. The method consists of two main steps: (1) an improved closed principal curve-based method was used to obtain the data sequence, in which only few radiologist-defined seed points were used as an approximate initialization; and (2) an enhanced machine learning method was used to achieve an accurate and smooth contour of the prostate. Our results show that the proposed model achieved superior segmentation performance compared with several other state-of-the-art models, achieving an average Dice similarity coefficient, Jaccard similarity coefficient (Ω), and accuracy of 96.5, 95.1, and 96.3%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Akbari, H., & Fei, B. (2012). 3D ultrasound image segmentation using wavelet support vector machines. Medical Physics, 39(6), 2972–2984.

    Article  Google Scholar 

  • Akbarinia, A., & Parraga, C. A. (2018). Feedback and surround modulated boundary detection. International Journal of Computer Vision, 126(12), 1367–1380.

    Article  Google Scholar 

  • Ali, M. Z., Awad, N. H., Suganthan, P. N., & Reynolds, R. G. (2017). An adaptive multipopulation differential evolution with dynamic population reduction. IEEE Transactions on Cybernetics, 47(9), 2768–2779.

    Article  Google Scholar 

  • Amari, S. (1993). Backpropagation and stochastic gradient descent method. Neurocomputing, 5(4–5), 185–196.

    Article  MATH  Google Scholar 

  • Anas, E. M. A., Mousavi, P., & Abolmaesumi, P. (2018). A deep learning approach for real time prostate segmentation in freehand ultrasound guided biopsy. Medical Image Analysis, 48, 107–116.

    Article  Google Scholar 

  • Anas, E. M. A., Nouranian, S., Mahdavi, S. S., Spadinger, I., Morris, W. J., Salcudean, S. E., & Abolmaesumi, P. (2017). Clinical target-volume delineation in prostate brachytherapy using residual neural networks. In M. Descoteaux, L. Maier-Hein, A. Franz, P. Jannin, D. L. Collins, & S. Duchesne (Eds.), International conference on medical image computing and computer assisted intervention (pp. 365–373). Cham: Springer.

    Google Scholar 

  • Arce-Santana, E. R., Mejia-Rodriguez, A. R., Martinez-Peña, E., Alba, A., Mendez, M., Scalco, E., et al. (2019). A new Probabilistic Active Contour region-based method for multiclass medical image segmentation. Medical & Biological Engineering & Computing, 57(3), 565–576.

    Article  Google Scholar 

  • Baioletti, M., Di Bari, G., Milani, A., & Poggioni, V. (2020). Differential evolution for neural networks optimization. Mathematics, 8(1), 69.

    Article  MathSciNet  Google Scholar 

  • Benaichouche, A. N., Oulhadj, H., & Siarry, P. (2013). Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction. Digital Signal Processing, 23(5), 1390–1400.

    Article  MathSciNet  Google Scholar 

  • Bi, H., Jiang, Y., Tang, H., Yang, G., Shu, H., & Dillenseger, J.-L. (2020). Fast and accurate segmentation method of active shape model with Rayleigh mixture model clustering for prostate ultrasound images. Computer Methods and Programs in Biomedicine, 184, 105097.

    Article  Google Scholar 

  • Chen, M.-R., Chen, B.-P., Zeng, G.-Q., Lu, K.-D., & Chu, P. (2020). An adaptive fractional-order BP neural network based on extremal optimization for handwritten digits recognition. Neurocomputing, 391, 260–272.

    Article  Google Scholar 

  • Cheng, R., Lay, N., Mertan, F., Turkbey, B., Roth, H. R., Lu, L., & Summers, R. M. (2017). Deep learning with orthogonal volumetric HED segmentation and 3D surface reconstruction model of prostate MRI. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) (pp. 749-753). IEEE.

  • Ghose, S., Oliver, A., Mitra, J., Martí, R., Lladó, X., Freixenet, J., et al. (2013). A supervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound images. Medical Image Analysis, 17(6), 587–600.

    Article  Google Scholar 

  • Gurari, D., Zhao, Y., Jain, S. D., Betke, M., & Grauman, K. (2019). Predicting how to distribute work between algorithms and humans to segment an image batch. International Journal of Computer Vision, 127(9), 1198–1216.

    Article  Google Scholar 

  • Han, S. M., Lee, H. J., & Choi, J. Y. (2008). Computer-aided prostate cancer detection using texture features and clinical features in ultrasound image. Journal of Digital Imaging, 21(S1), 121–133.

    Article  Google Scholar 

  • Hastie, T., & Stuetzle, W. (1989). Principal curves. Journal of the American Statistical Association, 84(406), 502–516.

    Article  MathSciNet  MATH  Google Scholar 

  • He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 2961-2969).

  • Jain, A., Nandakumar, K., & Ross, A. (2005). Score normalization in multimodal biometric systems. Pattern Recognition, 38(12), 2270–2285.

    Article  Google Scholar 

  • Jaouen, V., Bert, J., Mountris, K., Boussion, N., Schick, U., Pradier, O., et al. (2019). Prostate volume segmentation in TRUS using hybrid edge-bhattacharyya active surfaces. IEEE Transactions on Biomedical Engineering, 66(4), 920–933.

    Article  Google Scholar 

  • Jin, J., Yang, L., Zhang, X., & Ding, M. (2013). Vascular tree segmentation in medical images using hessian-based multiscale filtering and level set method. Computational and Mathematical Methods in Medicine, 2013, 1–9.

    MathSciNet  MATH  Google Scholar 

  • Karimi, D., Zeng, Q., Mathur, P., Avinash, A., Mahdavi, S., Spadinger, I., et al. (2019). Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images. Medical Image Analysis, 57, 186–196.

    Article  Google Scholar 

  • Kegl, B., Krzyzak, A., Linder, T., & Zeger, K. (2000). Learning and design of principal curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(3), 281–297.

    Article  Google Scholar 

  • Khiyali, Z., Manoochri, M., Jeihooni, A. K., Heydarabadi, A. B., & Mobasheri, F. (2017). Educational intervention on preventive behaviors on gestational diabetes in pregnant women: application of health belief model. International Journal of Pediatrics, 5(5), 4821–4831.

    Google Scholar 

  • Leema, N., Nehemiah, H. K., & Kannan, A. (2016). Neural network classifier optimization using differential evolution with global information and back propagation algorithm for clinical datasets. Applied Soft Computing, 49, 834–844.

    Article  Google Scholar 

  • Lim, S., Jun, C., Chang, D., Petrisor, D., Han, M., & Stoianovici, D. (2019). Robotic transrectal ultrasound-guided prostate biopsy. IEEE Transactions on Bio-Medical Engineering, 66(9), 2527–2537.

    Article  Google Scholar 

  • Liu, C., Ng, M. K. P., & Zeng, T. (2018). Weighted variational model for selective image segmentation with application to medical images. Pattern Recognition, 76, 367–379.

    Article  Google Scholar 

  • Liu, Y., He, C., Gao, P., Wu, Y., & Ren, Z. (2019). A binary level set variational model with L1 data term for image segmentation. Signal Processing, 155, 193–201.

    Article  Google Scholar 

  • Nouranian, S., Mahdavi, S. S., Spadinger, I., Morris, W. J., Salcudean, S. E., & Abolmaesumi, P. (2015). A multi-atlas-based segmentation framework for prostate brachytherapy. IEEE Transactions on Medical Imaging, 34(4), 950–961.

    Article  Google Scholar 

  • Nouranian, S., Ramezani, M., Spadinger, I., Morris, W. J., Salcudean, S. E., & Abolmaesumi, P. (2016). Learning-based multi-label segmentation of transrectal ultrasound images for prostate brachytherapy. IEEE Transactions on Medical Imaging, 35(3), 921–932.

    Article  Google Scholar 

  • Orlando, N., Gillies, D. J., Gyacskov, I., Romagnoli, C., D’Souza, D., & Fenster, A. (2020). Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images. Medical Physics, 47(6), 2413–2426.

    Article  Google Scholar 

  • Palmero, C., Clapés, A., Bahnsen, C., Møgelmose, A., Moeslund, T. B., & Escalera, S. (2016). Multi-modal RGB–Depth–thermal human body segmentation. International Journal of Computer Vision, 118(2), 217–239.

    Article  MathSciNet  Google Scholar 

  • Peng, T., Xu, T. C., Wang, Y., & Li, F. (2020a). Deep belief network and closed polygonal line for lung segmentation in chest radiographs. The Computer Journal.

  • Peng, T., Wang, Y., Xu, T. C., & Chen, X. (2019). Segmentation of lung in chest radiographs using hull and closed polygonal line method. IEEE Access, 7, 137794–137810.

    Article  Google Scholar 

  • Peng, T., Wang, Y., Xu, T. C., Shi, L., Jiang, J., & Zhu, S. (2018). Detection of lung contour with closed principal curve and machine learning. Journal of Digital Imaging, 31(4), 520–533.

    Article  Google Scholar 

  • Peng, T., Xu, T. C., Wang, Y., Zhou, H., Candemir, S., Zaki, W. M. D. W., et al. (2020b). Hybrid automatic lung segmentation on chest CT scans. IEEE Access, 8, 73293–73306.

    Article  Google Scholar 

  • Qiu, W., Yuan, J., Ukwatta, E., Sun, Y., Rajchl, M., & Fenster, A. (2014). Prostate segmentation: an efficient convex optimization approach with axial symmetry using 3-D TRUS and MR images. IEEE Transactions on Medical Imaging, 33(4), 947–960.

    Article  Google Scholar 

  • Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Cham: Springer

  • Sara Mahdavi, S., Chng, N., Spadinger, I., Morris, W. J., & Salcudean, S. E. (2011). Semi-automatic segmentation for prostate interventions. Medical Image Analysis, 15(2), 226–237.

    Article  Google Scholar 

  • Shaaer, A., Davidson, M., Semple, M., Nicolae, A., Mendez, L. C., Chung, H., et al. (2019). Clinical evaluation of an MRI-to-ultrasound deformable image registration algorithm for prostate brachytherapy. Brachytherapy, 18(1), 95–102.

    Article  Google Scholar 

  • Shaaer, A., Paudel, M., Davidson, M., Semple, M., Nicolae, A., Mendez, L. C., et al. (2020). Dosimetric evaluation of MRI-to-ultrasound automated image registration algorithms for prostate brachytherapy. Brachytherapy, 19(5), 599–606.

    Article  Google Scholar 

  • Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4), 341–359.

    Article  MathSciNet  MATH  Google Scholar 

  • Sun, Y., & Zhang, Q. (2018). Optimization design and reality of the virtual cutting process for the boring bar based on PSO-BP neural networks. Neural Computing and Applications, 29(5), 1357–1367.

    Article  Google Scholar 

  • Taghanaki, S. A., Zheng, Y., Kevin Zhou, S., Georgescu, B., Sharma, P., Xu, D., et al. (2019). Combo loss: handling input and output imbalance in multi-organ segmentation. Computerized Medical Imaging and Graphics, 75, 24–33.

    Article  Google Scholar 

  • Tong, N., Gou, S., Yang, S., Ruan, D., & Sheng, K. (2018). Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Medical Physics, 45(10), 4558–4567.

    Article  Google Scholar 

  • Wang, G., Zuluaga, M. A., Li, W., Pratt, R., Patel, P. A., Aertsen, M., et al. (2019a). DeepIGeoS: A deep interactive geodesic framework for medical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(7), 1559–1572.

    Article  Google Scholar 

  • Wang, J., Wen, Y., Gou, Y., Ye, Z., & Chen, H. (2017). Fractional-order gradient descent learning of BP neural networks with caputo derivative. Neural Networks, 89, 19–30.

    Article  MATH  Google Scholar 

  • Wang, L., Zeng, Y., & Chen, T. (2015). Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Systems with Applications, 42(2), 855–863.

    Article  Google Scholar 

  • Wang, W., Pan, B., Yan, J., Fu, Y., & Liu, Y. (2021). Magnetic resonance imaging and transrectal ultrasound prostate image segmentation based on improved level set for robotic prostate biopsy navigation. The International Journal of Medical Robotics and Computer Assisted Surgery, 17(1), 1–14.

    Article  Google Scholar 

  • Wang, Y., Ni, D., Dou, H., Hu, X., Zhu, L., Yang, X., et al. (2019b). Deep attentive features for prostate segmentation in 3D transrectal ultrasound. IEEE Transactions on Medical Imaging, 38(12), 2768–2778.

    Article  Google Scholar 

  • Wang, Y., Zheng, Q., & Heng, P. A. (2018). Online robust projective dictionary learning: shape modeling for MR-TRUS registration. IEEE Transactions on Medical Imaging, 37(4), 1067–1078.

    Article  Google Scholar 

  • Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and intelligent laboratory systems, 2(1–3), 37–52.

    Article  Google Scholar 

  • Wu, G., Mallipeddi, R., Suganthan, P. N., Wang, R., & Chen, H. (2016). Differential evolution with multi-population based ensemble of mutation strategies. Information Sciences, 329, 329–345.

    Article  Google Scholar 

  • Xue, C., Zhu, L., Fu, H., Hu, X., Li, X., Zhang, H., & Heng, P.-A. (2021). Global guidance network for breast lesion segmentation in ultrasound images. Medical Image Analysis, 70, 101989.

    Article  Google Scholar 

  • Yan, P., Xu, S., Turkbey, B., & Kruecker, J. (2010). Discrete deformable model guided by partial active shape model for TRUS image segmentation. IEEE Transactions on Biomedical Engineering, 57(5), 1158–1166.

    Article  Google Scholar 

  • Yang, S., Chen, D., Zeng, X., & Pudney, P. (2014). A greedy algorithm for constraint principal curves. Journal of Computers, 9(5), 1125–1130.

    Google Scholar 

  • Yu, Y., Chen, Y., & Chiu, B. (2016). Fully automatic prostate segmentation from transrectal ultrasound images based on radial bas-relief initialization and slice-based propagation. Computers in Biology and Medicine, 74, 74–90.

    Article  Google Scholar 

  • Zemene, E. Z., Alemu, L. T., & Pelillo, M. (2019). Dominant sets for “constrained” image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(10), 2438–2451.

    Article  Google Scholar 

  • Zhang, J., Chen, D., & Kruger, U. (2008). Adaptive Constraint K-segment principal curves for intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems, 9(4), 666–677.

    Article  Google Scholar 

  • Zhang, J., & Sanderson, A. C. (2009). JADE: adaptive differential evolution with optional external archive. IEEE Transactions on Evolutionary Computation, 13(5), 945–958.

    Article  Google Scholar 

  • Zhang, Y., Sankar, R., & Qian, W. (2007). Boundary delineation in transrectal ultrasound image for prostate cancer. Computers in Biology and Medicine, 37(11), 1591–1599.

    Article  Google Scholar 

  • Zhou, S., Hawley, J. R., Soares, F., Grillo, G., Teng, M., Madani Tonekaboni, S. A., et al. (2020). Noncoding mutations target cis-regulatory elements of the FOXA1 plexus in prostate cancer. Nature Communications, 11(1), 441.

    Article  Google Scholar 

  • Zou, D., Li, S., Kong, X., Ouyang, H., & Li, Z. (2018). Solving the dynamic economic dispatch by a memory-based global differential evolution and a repair technique of constraint handling. Energy, 147, 59–80.

    Article  Google Scholar 

  • Zou, D., Li, S., Wang, G.-G., Li, Z., & Ouyang, H. (2016). An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects. Applied Energy, 181, 375–390.

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by ITS/080/19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Cai.

Additional information

Communicated by Jan Kybic.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Appendix table used symbols in this work

Used in the method

Description

Symbols

Global View

Temporary variables

s = 1,2,.,N

Real number system

IR

Raw data set

Data

Each point in the Data set

Data = {p1,p2,..,ps}

Number of points in Data set

N

X-axis coordinate of each point

x

Y-axis coordinate of each point

y

GCPC

Temporary variables

iv/jv = 1,2,..,num;is/js = 1,2,..,k

ip = 1,2,..,N

Principal curve

f

Newly added vertex/ determined vertex in the principal curve

viv/vjv

Number of vertices of principal curve

num

Number of segments

k

Length of segment

L

Optimal weight of penalty factor

β

Average squared distance

ΔN(fk,N)

Maximum distance deviation

Δs

Current Distance

CD

Last Loop Distance

LLD

Angle between two segments

α

Data radius

R

Distance from data point to principal curve

DSip

Minimum/ Maximum distance from data point to principal curve

DSmin/ DSmax

Data sequence

D = {d1,d2,..,dN}

Projection index

t

Execution time

ext

MADE

Temporary variables

z = 1,2,.,Pop

Population size

Pop

Population candidate

cz

Lower/ upper bounds of the search space

Umin/Umax

Present/ Maximum iteration number

G/ Gmax

Mutation factor

F

Crossover rate

CR

Mutated individual

vz

Trial individual

uz

Length of chromosome

CS

Mean mutation Factor

uF

Mean Crossover Rate

uCR

Set of all successful mutation factors

SF

Set of all successful crossover probabilities

SCR

Number of solutions

Np

Probability of using the mutation operator

ProbG

Maximal/minimal probability of using the mutation operator

Probmax/ Probmin

Expression function

fun(•)

CFBT

Temporary variables

h = 1,2,.,n;i = 1,2,.,l; j = 1,2,.,m

Neurons of input layer

Ih ∈ {I1, I2,…,In}

Neurons of hidden layer

Hi ∈ {H1, H2, …, Hl}

Neurons of output layer

Oj ∈ {O1, O2,…, Om}

Input of input layer

\(X^{s}\)

Input/output of hidden layer

\({\text{H}}_{Ii}^{s}\)/\({\text{H}}_{Oi}^{s}\)

Input/output of output layer

\({\text{Y}}_{Ij}^{s}\)/\({\text{Y}}_{j}^{s}\)

Weight from input layer to the hidden layer

w1hi

Weight from hidden layer to the output layer

w2ij

Thresholds of the i-th hidden neuron

ai

Thresholds of the u-th output neuron

bj

Activation functions from input to hidden layer

fun1(•)

Activation functions from hidden to output layer

fun2(•)

Construsted function

funj(•)

Mean Square Error function

E

Expected result

\({\text{O}}_{j}^{s}\)(equals to ps in this work)

Caputo derivative operator

Caputo(•)

Learning rate from input layer to the hidden layer

η1

Learning rate from hidden layer to the output layer

η2

Gammar function

\(\Gamma\)

Objective sum function

g(•)

Adjustment parameter

ap

Training iteration number

r

Evaluation parameters

Dice Similarity Coefficient

DSC

Jaccard Similarity Coefficient

Ω

Accuracy

ACC

True Positive

TP

False Positive

FP

False Negative

FN

True Negative

TN

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, T., Tang, C., Wu, Y. et al. H-SegMed: A Hybrid Method for Prostate Segmentation in TRUS Images via Improved Closed Principal Curve and Improved Enhanced Machine Learning. Int J Comput Vis 130, 1896–1919 (2022). https://doi.org/10.1007/s11263-022-01619-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-022-01619-3

Keywords

Navigation