Skip to main content
Log in

Snowvision: Segmenting, Identifying, and Discovering Stamped Curve Patterns from Fragments of Pottery

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In southeastern North America, Indigenous potters and woodworkers carved complex, primarily abstract, designs into wooden pottery paddles, which were subsequently used to thin the walls of hand-built, clay vessels. Original paddle designs carry rich historical and cultural information, but pottery paddles from ancient times have not survived. Archaeologists have studied design fragments stamped on sherds to reconstruct complete or nearly complete designs, which is extremely laborious and time-consuming. In Snowvision, we aim to develop computer vision methods to assist archaeologists to accomplish this goal more efficiently and effectively. For this purpose, we identify and study three computer vision tasks: (1) extracting curve structures stamped on pottery sherds; (2) matching sherds to known designs; (3) clustering sherds with unknown designs. Due to the noisy, highly fragmented, composite-curve patterns, each task poses unique challenges to existing methods. To solve them, we propose (1) a weakly-supervised CNN-based curve structure segmentation method that takes only curve skeleton labels to predict full curve masks; (2) a patch-based curve pattern matching method to address the problem of partial matching in terms of noisy binary images; (3) a curve pattern clustering method consisting of pairwise curve matching, graph partitioning and sherd stitching. We evaluate the proposed methods on a set of collected sherds and extensive experimental results show the effectiveness of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alilou, V.K. (2020). Fingerprint matching: A simple approach. https://github.com/alilou63/fingerprint.

  • Anichini, F., Banterle, F., Garrigós, J., Callieri, M., Dershowitz, N., Dubbini, N., Diaz, D. L., Evans, T., Gattiglia, G., Green, K., et al. (2020). Developing the archaide application: A digital workflow for identifying, organising and sharing archaeological pottery using automated image recognition. Internet Archaeol, 52, 1–48.

    Google Scholar 

  • Arbelaez, P., Maire, M., Fowlkes, C., & Malik, J. (2011). Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(5), 898–916.

    Article  Google Scholar 

  • Arthur, D., & Vassilvitskii, S. (2006). k-means++: The advantages of careful seeding. Tech. rep.

    MATH  Google Scholar 

  • Badrinarayanan, V., Kendall, A., & Cipolla, R. (2015). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. arXiv preprint arXiv:1511.00561.

  • Balntas, V., Lenc, K., Vedaldi, A., & Mikolajczyk, K. (2017). Hpatches: A benchmark and evaluation of handcrafted and learned local descriptors. In: IEEE conference on computer vision and pattern recognition, pp. 5173–5182.

  • Banterle, F., Itkin, B., Dellepiane, M., Wolf, L., Callieri, M., Dershowitz, N., & Scopigno, R. (2017). Vasesketch: Automatic 3d representation of pottery from paper catalog drawings. In: International conference on document analysis and recognition, IEEE, vol. 1, pp. 683–690.

  • Barrow, H., Tenenbaum, J., Bolles, R., & Wolf, H. (1977). Parametric correspondence and Chamfer matching: Two new techniques for image matching. In: International joint conference on artificial intelligence, vol. 2, pp. 659–663.

  • Bay, H., Tuytelaars, T., & Van Gool, L. (2006). Surf: Speeded up robust features. In: European conference on computer vision, Springer, pp. 404–417.

  • Belongie, S., Malik, J., & Puzicha, J. (2001). Shape Context: A new descriptor for shape matching and object recognition. In: Advances in Neural Information Processing Systems, pp. 831–837.

  • Brown, M., & Lowe, D. (2007). Automatic panoramic image stitching using invariant features. International Journal of Computer Vision, 74(1), 59–73.

    Article  Google Scholar 

  • Broyles, B. J. (1968). Reconstructed designs from swift creek complicated stamped sherds. Southeastern Archaeological Conference Bulletin, 8, 49–55.

    Google Scholar 

  • Brunelli, R. (2009). Template matching techniques in computer vision: Theory and practice. John Wiley & Sons.

    Book  Google Scholar 

  • Bundy, A., & Wallen, L. (1984). Difference of gaussians. In: Catalogue of Artificial Intelligence Tools, Springer, p. 30.

  • Caron, M., Bojanowski, P., Joulin, A., & Douze, M. (2018). Deep clustering for unsupervised learning of visual features. In: European conference on computer vision, pp. 132–149.

  • Carson, C., Thomas, M., Belongie, S., Hellerstein, J.M., & Malik, J. (1999). Blobworld: A system for region-based image indexing and retrieval. In: International conference on advances in visual information systems, Springer, pp. 509–517.

  • Chan, J., Addison Lee, J., & Kemao, Q. (2017). Bind: Binary integrated net descriptors for texture-less object recognition. In: IEEE conference on computer vision and pattern recognition, pp. 2068–2076.

  • Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277.

    Article  MATH  Google Scholar 

  • Chang, J., Wang, L., Meng, G., Xiang, S., & Pan, C. (2017). Deep adaptive image clustering. In: Proceedings of the IEEE international conference on computer vision, pp. 5879–5887.

  • Chao, P., Kao, C.Y., Ruan, Y.S., Huang, C.H., & Lin, Y.L. (2019). Hardnet: A low memory traffic network. In: IEEE International conference on computer vision, pp. 3552–3561.

  • Chen, L.C., Papandreou, G., Kokkinos, I., & Murphy, K., Yuille, A.L. (2016). DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv preprint arXiv:1606.00915.

  • Chen, L.C., Zhu, K., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision, pp. 801–818.

  • Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619.

    Article  Google Scholar 

  • Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., & Nießner, M. (2017) Scannet: Richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5828–5839.

  • Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In: IEEE conference on computer vision and pattern recognition, vol. 1, pp. 886–893.

  • Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2010). The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2), 303–338.

    Article  Google Scholar 

  • Frenkel, M., & Basri, R. (2003). Curve matching using the fast marching method. In: International workshop on energy minimization methods in computer vision and pattern recognition, Springer, pp. 35–51.

  • Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points. Science, 315(5814), 972–976.

    Article  MathSciNet  MATH  Google Scholar 

  • Fu, F., Wei, J., Zhang, M., Yu, F., Xiao, Y., Rong, D., Shan, Y., Li, Y., Zhao, C., Liao, F., et al. (2020). Rapid vessel segmentation and reconstruction of head and neck angiograms using 3d convolutional neural network. Nature Communications, 11(1), 1–12.

    Article  Google Scholar 

  • Fu, L. (2019). A study of geometric stamped pattern pottery and early maritime cultural interactions between mainland china and taiwan. In: Prehistoric Maritime Cultures and Seafaring in East Asia, Springer, pp. 235–249.

  • Gamble, C. (2004). Archaeology: The basics. Rutledge.

    Google Scholar 

  • Gualandi, M. L., Gattiglia, G., & Anichini, F. (2021). An open system for collection and automatic recognition of pottery through neural network algorithms. Heritage, 4(1), 140–159.

    Article  Google Scholar 

  • Han, D., & Hahn, H. S. (2014). Axis estimation and grouping of rotationally symmetric object segments. Pattern Recognition, 47(1), 296–312.

    Article  Google Scholar 

  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition, pp. 770–778.

  • Hinami, R., Matsui, Y., & Satoh, S. (2017). Region-based image retrieval revisited. In: ACM international conference on multimedia, pp. 528–536.

  • Hoffer, E., & Ailon, N. (2015). Deep metric learning using triplet network. In: International workshop on similarity-based pattern recognition, Springer, pp. 84–92.

  • Jain, A., Ross, A., & Prabhakar, S. (2001). Fingerprint matching using minutiae and texture features. In: International conference on image processing, IEEE, vol. 3, pp. 282–285.

  • Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. Prentice-Hall Inc.

    MATH  Google Scholar 

  • Kampel, M., & Sablatnig, R. (2003). Profile-based pottery reconstruction. In: IEEE conference on computer vision and pattern recognition—Workshop, IEEE, vol. 1, p. 4.

  • Kong, B., Supancic, J., Ramanan, D., & Fowlkes, C. C. (2019). Cross-domain image matching with deep feature maps. International Journal of Computer Vision, 127(11), 1738–1750.

    Article  Google Scholar 

  • Lam, L., Lee, S. W., & Suen, C. Y. (1992). Thinning methodologies-a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(9), 869–885.

    Article  Google Scholar 

  • Li, C., Xu, C., Gui, C., & Fox, M. D. (2010). Distance regularized level set evolution and its application to image segmentation. IEEE Transactions on Image Processing, 19(12), 3243–3254.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, H., Song, D., Liu, Y., & Li, B. (2018). Automatic pavement crack detection by multi-scale image fusion. IEEE Transactions on Intelligent Transportation Systems, 20(6), 2025–2036.

    Article  Google Scholar 

  • Li, Z., & Chen, J. (2015). Superpixel segmentation using linear spectral clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1356–1363.

  • Lloyd, S. (1982). Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2), 129–137.

    Article  MathSciNet  MATH  Google Scholar 

  • Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In: IEEE conference on computer vision and pattern recognition, pp. 3431–3440.

  • Lorigo, L. M., Faugeras, O. D., Grimson, W. E. L., Keriven, R., Kikinis, R., Nabavi, A., & Westin, C. F. (2001). Curves: Curve evolution for vessel segmentation. Medical Image Analysis, 5(3), 195–206.

    Article  Google Scholar 

  • Lowe, D.G. (1999). Object recognition from local scale-invariant features. In: IEEE international conference on computer vision, IEEE, vol. 2, pp. 1150–1157.

  • Lu, Y., Zhou, J., Chen, J., Wang, J., Smith, K., Colin, W., & Wang, S. (2018). Curve-structure segmentation from depth maps: A CNN-based approach and its application to exploring cultural heritage objects. AAAI Conference on Artificial Intelligence.

  • Lucena, M., Martínez-Carrillo, A., Fuertes, J. M., Carrascosa, F., & Ruiz, A. (2016). Decision support system for classifying archaeological pottery profiles based on mathematical morphology. Multimedia Tools and Applications, 75(7), 3677–3691.

    Article  Google Scholar 

  • MacDonald, L.W. (2015). Realistic visualisation of cultural heritage objects. Ph.D. thesis, UCL (University College London).

  • Makridis, M., & Daras, P. (2012). Automatic classification of archaeological pottery sherds. Journal on Computing and Cultural Heritage, 5(4), 15.

    Article  Google Scholar 

  • Markuš, N., Pandžić, I., & Ahlberg, J. (2018). Learning local descriptors by optimizing the keypoint-correspondence criterion: Applications to face matching, learning from unlabeled videos and 3d-shape retrieval. IEEE Transactions on Image Processing, 28(1), 279–290.

    Article  MathSciNet  MATH  Google Scholar 

  • Martínez-Carrillo, A.L. (2008). Computer applications in archaeological pottery: A review and new perspectives. In: Conference on computer applications and quantitative methods in archaeology, vol. 2, p. 6.

  • Minaee, S., Boykov, Y.Y., Porikli, F., Plaza, A.J., Kehtarnavaz, N., & Terzopoulos, D. (2021). Image segmentation using deep learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence.

  • Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987.

    Article  MATH  Google Scholar 

  • Ono, Y., Trulls, E., Fua, P., & Yi, K.M. (2018). Lf-net: Learning local features from images. In: Advances in Neural Information Processing Systems, pp. 6234–6244.

  • Ostertag, C., & Beurton-Aimar, M. (2020). Matching ostraca fragments using a siamese neural network. Pattern Recognition Letters, 131, 336–340.

    Article  Google Scholar 

  • Otto, C., Wang, D., & Jain, A. K. (2017). Clustering millions of faces by identity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(2), 289–303.

    Article  Google Scholar 

  • Pirrone, A., Aimar, M.B., & Journet, N. (2019). Papy-s-net: A siamese network to match papyrus fragments. In: International workshop on historical document imaging and processing, pp. 78–83.

  • Pizer, S.M., Johnston, R.E., Ericksen, J.P., Yankaskas, B.C., & Muller, K.E. (1990). Contrast-limited adaptive histogram equalization: Speed and effectiveness. In: Conference on visualization in biomedical computing, IEEE Computer Society, pp. 337–338.

  • Rasheed, N.A., & Nordin, M.J. (2018). Classification and reconstruction algorithms for the archaeological fragments. Journal of King Saud University-Computer and Information Sciences.

  • Rother, C., Kolmogorov, V., & Blake, A. (2004). Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics, 23(3), 309–314.

    Article  Google Scholar 

  • Roux, V. (2019). Ceramics and society: A technological approach to archaeological assemblages. Springer.

    Book  Google Scholar 

  • Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). Orb: An efficient alternative to sift or surf. In: International conference on computer vision, IEEE, pp. 2564–2571.

  • Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211–252.

    Article  MathSciNet  Google Scholar 

  • Shen, W., Zhao, K., Jiang, Y., Wang, Y., Zhang, Z., & Bai, X. (2016). Object skeleton extraction in natural images by fusing scale-associated deep side outputs. In: IEEE conference on computer vision and pattern recognition, pp. 222–230.

  • Shen, X., Wang, C., Li, X., Yu, Z., Li, J., Wen, C., Cheng, M., & He, Z. (2019). Rf-net: An end-to-end image matching network based on receptive field. In: IEEE conference on computer vision and pattern recognition, pp. 8132–8140.

  • Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.

    Article  Google Scholar 

  • Smith, K. Y., & Knight, V. J. (2012). Style in swift creek paddle art. Southeastern Archaeology, 31(2), 143–156.

    Article  Google Scholar 

  • Smith, K. Y., & Stephenson, K. (2018). The spatial dimension of the woodland period. Southeastern Archaeology, 37(2), 112–128.

    Article  Google Scholar 

  • Smith, P., Bespalov, D., Shokoufandeh, A., & Jeppson, P. (2010). Classification of archaeological ceramic fragments using texture and color descriptors. In: IEEE conference on computer vision and pattern recognition—Workshops, pp. 49–54.

  • Snow, F. (1975). Swift creek designs and distributions: A south Georgia study. Early Georgia, 3(2), 38–59.

    Google Scholar 

  • Snow, F. (1998). Swift creek design investigations. A World Engraved: Archaeology of the Swift Creek Culture pp. 61–98.

  • Son, K., Almeida, E.B., Cooper, D.B. (2013). Axially symmetric 3d pots configuration system using axis of symmetry and break curve. In: IEEE conference on computer vision and pattern recognition, pp. 257–264.

  • Stamatopoulos, M.I., & Anagnostopoulos, C.N. (2016). 3d digital reassembling of archaeological ceramic pottery fragments based on their thickness profile. arXiv preprint arXiv:1601.05824.

  • Talcott, L. (1935). Attic black-glazed stamped ware and other pottery from a fifth century well. Hesperia: The Journal of the American School of Classical Studies at Athens, 4(3), 477–523.

    Article  Google Scholar 

  • Tao, X., Prince, J. L., & Davatzikos, C. (2002). Using a statistical shape model to extract sulcal curves on the outer cortex of the human brain. IEEE Transactions on Medical Imaging, 21(5), 513–524.

    Article  Google Scholar 

  • W, J. et al (2020). Deep high-resolution representation learning for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence.

  • Tico, M., & Kuosmanen, P. (2003). Fingerprint matching using an orientation-based minutia descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8), 1009–1014.

    Article  Google Scholar 

  • Tombari, F., Franchi, A., & Di Stefano, L. (2013). Bold features to detect texture-less objects. In: IEEE International conference on computer vision, pp. 1265–1272.

  • Tremeau, A., & Borel, N. (1997). A region growing and merging algorithm to color segmentation. Pattern Recognition, 30(7), 1191–1203.

    Article  Google Scholar 

  • Vese, L. A., & Chan, T. F. (2002). A multiphase level set framework for image segmentation using the mumford and shah model. International Journal of Computer Vision, 50(3), 271–293.

    Article  MATH  Google Scholar 

  • Van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., & Yu, T. (2014). scikit-image: Image processing in python. PeerJ, 2, e453.

    Article  Google Scholar 

  • Wang, S., Kubota, T., & Siskind, J.M. (2004). Salient boundary detection using ratio contour. In: Advances in Neural Information Processing Systems, pp. 1571–1578.

  • Wang, S., & Siskind, J. M. (2003). Image segmentation with ratio cut. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(6), 675–690.

    Article  Google Scholar 

  • Wang, Z., Zheng, L., Li, Y., & Wang, S. (2019). Linkage based face clustering via graph convolution network. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1117–1125.

  • Willis, A., Orriols, X., & Cooper, D.B. (2003). Accurately estimating sherd 3d surface geometry with application to pot reconstruction. In: IEEE conference on computer vision and pattern recognition—Workshops, IEEE, vol. 1, p. 5.

  • Willis, A.R., & Cooper, D.B. (2004). Bayesian assembly of 3d axially symmetric shapes from fragments. In: IEEE conference on computer vision and pattern recognition, IEEE, vol. 1, p. I.

  • Wu, J., Long, K., Wang, F., Qian, C., Li, C., Lin, Z., & Zha, H. (2019). Deep comprehensive correlation mining for image clustering. In: Proceedings of the IEEE/CVF international conference on computer vision, pp. 8150–8159.

  • Wu, K. L., & Yang, M. S. (2007). Mean shift-based clustering. Pattern Recognition, 40(11), 3035–3052.

    Article  MATH  Google Scholar 

  • Xie, S., & Tu, Z. (2015). Holistically-nested edge detection. In: IEEE international conference on computer vision, pp. 1395–1403.

  • Yeh, C.K., Matsuda, N., Huang, X., Li, F., Walton, M., & Cossairt, O. (2016). A streamlined photometric stereo framework for cultural heritage. In: European conference on computer vision, Springer, pp. 738–752.

  • Yi, K.M., Trulls, E., Lepetit, V., & Fua, P. (2016). Lift: Learned invariant feature transform. In: European conference on computer vision, Springer, pp. 467–483.

  • Zhan, X., Liu, Z., Yan, J., Lin, D., & Loy, C.C. (2018). Consensus-driven propagation in massive unlabeled data for face recognition. In: Proceedings of the European conference on computer vision (ECCV), pp. 568–583.

  • Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., & Torr, P.H. (2015). Conditional random fields as recurrent neural networks. In: IEEE international conference on computer vision, pp. 1529–1537.

  • Zou, Q., Cao, Y., Li, Q., Mao, Q., & Wang, S. (2012). Cracktree: Automatic crack detection from pavement images. Pattern Recognition Letters, 33(3), 227–238.

    Article  Google Scholar 

  • Žunić, J., Hirota, K., & Rosin, P. L. (2010). A hu moment invariant as a shape circularity measure. Pattern Recognition, 43(1), 47–57.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Endowment for the Humanities (NEH) Digital Humanities Advancement Grant Program (HAA-266472-19), the National Science Foundation Archaeology and Archaeometry Grant Program (1658987), the National Center for Preservation Technology and Training Grant Program (P16AP00373), the Extreme Science and Engineering Discovery Environment (XSEDE) Science Gateway Program (DBS180011), University of South Carolina ASPIRE II Program, and University of South Carolina Social Science Provost Grant Program. We would like to show our gratitude to Frankie Snow at South Georgia State College for sharing his pearls of wisdom and design images with us during the course of this research. We are very grateful to Dr. Matthew Compton, Curator of the R. M. Bogan Repository at Georgia Southern University, and Dr. Amanda Roberts Thompson, Operations Director of the Laboratory of Archaeology at the University of Georgia, for generously providing access to collections, and Scot Keith at New South Associates for his enthusiasm and encouragement of this research. We would like to thank Research Computing at University of South Carolina for high-performance computing support, and the South Carolina Department of Natural Resources for institutional support. The Muscogee (Creek) Nation has approved the scanning of Broyles Collection sherds shown in Figure 16 and requests consultation on any future use of the scans and images including but not limited to presentations, publications, manuscripts, social media posts, and news stories.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karen Y. Smith or Song Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Takeshi Oishi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Zhou, J., McDorman, S.T. et al. Snowvision: Segmenting, Identifying, and Discovering Stamped Curve Patterns from Fragments of Pottery. Int J Comput Vis 130, 2707–2732 (2022). https://doi.org/10.1007/s11263-022-01669-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-022-01669-7

Keywords