Skip to main content
Log in

Abstract

The two’s complement fractional fixed-point number system is widely used to implement digital signal processing on VLSI chips. It has a range of values from −1 to one least significant bit below +1. Either the multiplication of −1 • −1 or taking the absolute value of −1 produces a result (+1) that cannot be represented. A new system, the negative two’s complement number system, is described here that has a range of one least significant bit above −1 to +1 which eliminates the problem. This paper presents the new number system and describes algorithms for the basic arithmetic operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Omondi, “Computer Arithmetic Systems: Algorithms, Architecture and Implementation,” New York: Prentice Hall, 1994.

    MATH  Google Scholar 

  2. LSI Multipliers: N × N Bit Parallel Multipliers, N = 8, 12 or 16 Commercial/Military Temperature,” Redondo Beach, CA: TRW LSI Products, October, 1977.

  3. M. D. Ercegovac and T. Lang, “Digital Arithmetic,” San Francisco, CA: Morgan Kaufman, 2004.

    Google Scholar 

  4. H. L. Garner, “Number Systems and Arithmetic,” in Advances in Computers, vol. 6, F. L. Alt and M. Rubinoff (Eds.), New York: Academic, 1965, pp. 131–194.

    Google Scholar 

  5. A. D. Booth, “A Signed Binary Multiplication Technique,” Q. J. Mech. Appl. Math., vol. 4, 1951, pp. 236–240.

    Article  MathSciNet  MATH  Google Scholar 

  6. O. L. MacSorley, “High-Speed Arithmetic in Binary Computers,” IEEE Proceedings, vol. 49, 1961, pp. 67–91.

    MathSciNet  Google Scholar 

  7. B. Parhami, Computer Arithmetic: Algorithms and Hardware Design, New York: Oxford University Press, 2000.

    Google Scholar 

  8. C. R. Baugh and B. A. Wooley, “A Two’s Complement Parallel Array Multiplication Algorithm,” IEEE Trans. Comput., vol. C-22, 1973, pp. 1045–1047.

    Article  Google Scholar 

  9. I. Koren, Computer Arithmetic Algorithms, 2nd ed., Natick, MA: A. K. Peters, 2002.

    MATH  Google Scholar 

  10. C. S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Trans. Electron. Comput., vol. EC-13, 1964, pp. 14–17.

    Article  Google Scholar 

  11. L. Dadda, “Some Schemes for Parallel Multipliers,” Alta Frequenza, vol. 34, 1965, pp. 349–356.

    Google Scholar 

  12. M. D. Ercegovac and T. Lang, Division and Square Root: Digit-recurrence Algorithms and Implementations, Boston: Kluwer, 1994.

    MATH  Google Scholar 

  13. M. J. Flynn, “On Division by Functional Iteration,” IEEE Trans. Comput., vol. C-19, 1970, pp. 702–706.

    Article  Google Scholar 

  14. S. F. Anderson, J. G. Earle, R. E. Goldschmidt and D. M. Powers, “The IBM System/360 Model 91: Floating-point Execution Unit,” IBM J. Res. Develop., vol. 11, 1967, pp. 34–53.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Earl E. Swartzlander Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swartzlander, E.E. The Negative Two’s Complement Number System. J VLSI Sign Process Syst Sign Im 49, 177–183 (2007). https://doi.org/10.1007/s11265-007-0052-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-007-0052-y

Keywords

Navigation