Skip to main content
Log in

Traceback-Based Optimizations for Maximum a Posteriori Decoding Algorithms

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Maximum A Posteriori (MAP) decoding is a crucial enabler of turbo coding and other powerful feedback-based algorithms. To allow pervasive use of these techniques in resources constrained systems, it is important to limit their implementation complexity, without sacrificing the superior performance they are known for. We show that introducing traceback information into the MAP algorithm, thereby leveraging components that are also part of Soft-Output Viterbi Algorithms (SOVA), offers two unique possibilities to simplify the computational requirements. Our proposed enhancements are effective at each individual decoding iteration and therefore provide gains on top of existing techniques such as early termination and memory optimizations. Based on these enhancements, we will present three new architectural variants for the decoder. Each one of these may be preferable depending on the decoder memory hardware requirements and number of trellis states. Computational complexity is reduced significantly, without incurring significant performance penalty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Notes

  1. These numbers directly follow from equations (2)-(7). The branch metric calculation results in three additions, see reference [9], equations (4)-(5).

  2. A MAX can be implemented as a slightly simplified ADD followed by a multiplexer, and is roughly comparable in terms of energy consumption [9]. The number of traceback operations is small in each one of the cases and the approximation as one equivalent operation therefore does not impact the overall comparison to a large degree.

References

  1. Technical Specification Group Radio Access Network; Multiplexing and channel coding (FDD), 3rd Generation Partnership Project (3GPP), TS 25.212 v5.0.0, http://www.3gpp.org.

  2. Physical layer standards for cdma2000 spread spectrum systems, 3rd Generation Partnership Project 2 (3GPP2), ARIB STD-T64-C.S20002-A, http://www.3gpp2.org.

  3. Thul, M., Vogt, T., Gilbert, F., & Wehn, N. (2002). Evaluation of algorithm optimizations for low-power turbo-decoder implementations. In Proc. IEEE ICASSP’02, Orlando, FL, pp.III-3101–4.

  4. Garrett, D., Xu, B., & Nicol (2001). Energy efficient turbo decoding for 3G mobile. In Proc. ACM/IEEE ISLPED’01, Huntington Beach, CA, pp. 328–33.

  5. Fossorier, M., Burkert, F., Lin, S., & Hagenauer, J. (1998). On the equivalence between SOVA and Max-Log-MAP decodings. IEEE Communications Letters, 2(5), 137–139.

    Article  Google Scholar 

  6. Vogt, J., & Finger, A. (2000). Improving the max-log-MAP turbo decoder. Electronics Letters, 36(23), 1937–1939.

    Article  Google Scholar 

  7. Benedetto, S., Divsalar, D., Montorsi, G., & Pollara, F. (1997). A soft-input soft-output APP module for iterative decoding of concatenated codes. IEEE Communications Letters, 1(1), 22–24.

    Article  Google Scholar 

  8. Forney, G. (1973). The viterbi algorithm. Proceedings IEEE, 61, 268–278.

    Article  MathSciNet  Google Scholar 

  9. Schurgers, C., Catthoor, F., & Engels, M. (2001). Memory optimization of MAP turbo decoder algorithms. IEEE Transactions on VLSI Systems, 9(2), 305–312.

    Article  Google Scholar 

  10. Benedetto, S., Divsalar, D., Montorsi, G., & Pollara, F. (1996). Algorithm for continuous decoding of turbo codes. Electronics Letters, 32(4), 314–315, Feb.

    Article  Google Scholar 

  11. Robertson, P., Villebrun, E., & Hoeher, P. (1995). A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain. Proc. International Conference on Communications (ICC’95), Seattle, Washington, pp. 1009–1013.

  12. Berrou, C., Glavieux, A., & Thitimajshima, P. (1993). Near Shannon limit error-correcting coding and decoding: Turbo-codes. Proc. International Conference on Communications (ICC’93), Geneva, Switzerland, pp. 1064–1070.

  13. Wang, Z., Suzuki, H., & Parhi, K. K. (2001). Finite wordlength analysis and adaptive decoding for turbo/MAP decoders. Journal of VLSI Signal Processing, 29(3), 209–221, November.

    Article  MATH  Google Scholar 

  14. Worm, A., Michel, H., Kreiselmaier, G., Thul, M., & Wehn, N. (2000). Advanced implementation issues of turbo-decoders. Proc. 2nd International Symposium on Turbo-Codes and Related Topics, Brest, France, pp. 351–354.

  15. Kaza, J., & Chakrabarti, C. I. (2004). Design and implementation of low-energy turbo decoders. IEEE Transactions on Very Large Scale Integration Systems, 12(9), 968–977.

    Article  Google Scholar 

  16. Hagenauer, J., & Papke, L. (1994). Decoding ‘turbo’-codes with the Soft Output Viterbi Algorithm (SOVA). Proc. of IEEE Int. Symposium on Information Theory (ISIT’94), Trondheim, Norway, p. 164.

  17. Halter, S., Öberg, M., Chau, P., & Siegel, P. (1998). Reconfigurable signal processor for channel coding & decoding in low SNR wireless communications. Proc. IEEE Workshop on Signal Processing Systems (SiPS’98), Cambridge, MA, pp. 260–274.

  18. Garrett, G., & Stan, M. (1998). Low power architecture of the Soft-Output Viterbi Algorithm. Proc. International Symposium on Low Power Electronics and Design, Monterey, CA, pp. 262–267.

  19. Masera, G., Mazza, M., Piccinini, G., Viglione, F., & Zamboni, M. (2002). Architectural strategies for low-power VLSI turbo decoders. IEEE Transactions on VLSI Systems, 10(3), 279–285, June.

    Article  Google Scholar 

  20. Worm, A., Lamm, H., & Wehn, N. (2001). Design of low-power high-speed maximum a posteriori decoder architectures. Proc. Design, Automation and Test in Europe (DATE’01), Munich, Germany, pp. 258–265.

  21. Gross, W., & Gulak, G. (1998). Simplified MAP algorithm suitable for implementation of turbo decoders. Electronics Letters, 34(16), 1577–1578.

    Article  Google Scholar 

  22. Boutillon, E., Gross, W., & Gulak, G. (2003). VLSI architectures for the MAP algorithm. IEEE Transactions on Communications, 51(2), 175–185.

    Article  Google Scholar 

  23. Wang, Z., Chi, Z., & Parhi, K. (2002). Area-efficient high-speed decoding schemes for turbo decoders. IEEE Transactions on VLSI Systems, 10(6), 902–912.

    Article  Google Scholar 

  24. Wu, C.-M., Shieh, M.-D., Wu, C.-H., Hwang, Y.-T., & Chen, J.-H. (2005). VLSI architectural design tradeoffs for sliding-window log-MAP decoders. Transactions on VLSI Systems, 13(4), 439–447.

    Article  Google Scholar 

  25. Tiwari, M., Zhu, Y., & Chakrabarti, C. (2005). Memory sub-banking scheme for high throughput MAP-based SISO decoders. IEEE Transactions on VLSI Systems, 13(4), 494–498.

    Article  Google Scholar 

  26. Engin, N. (2004). A turbo decoder architecture with scalable parallelism. Proc. Workshop on Signal Processing Systems (SIPS’04), Austin, TX, pp. 298–303.

  27. Li, F.-M., Shen, P.-L., & Wu, A.-Y. (2004). Unified convolutional/turbo decoder architecture design based on triple-mode MAP/VA kernel. Processing Asia-Pacific Conference on Circuits and Systems, 2, 1073–1076.

    Article  Google Scholar 

  28. Elassal, M., & Bayoumi, M. (2004). VLSI MAP decoder architectural analysis. Proc. Workshop on Signal Processing Systems (SIPS’04), Austin, TX, pp. 292–297.

  29. Cavallaro, J., & Vaya, M. (2003). Viturbo: a reconfigurable architecture for Viterbi and turbo decoding. Proc. ICASSP’03, pp. II-497–500.

  30. Schurgers, C., & Chandrakasan, A. (2004). Traceback-enhanced MAP decoding algorithm. Proc. International Conference on Acoustics, Speech, and Signal Processing (ICASSP'04), Montreal, Canada, pp. IV.645–IV.648.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curt Schurgers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schurgers, C., Chandrakasan, A. Traceback-Based Optimizations for Maximum a Posteriori Decoding Algorithms. J Sign Process Syst Sign Image Video Technol 53, 231–241 (2008). https://doi.org/10.1007/s11265-007-0160-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-007-0160-8

Keywords

Navigation