
J Sign Process Syst (2008) 53:335–347
DOI 10.1007/s11265-008-0213-7

VLSI Architecture Design of Fractional Motion
Estimation for H.264/AVC

Yi-Hau Chen · Tung-Chien Chen · Shao-Yi Chien ·
Yu-Wen Huang · Liang-Gee Chen

Received: 7 March 2006 / Revised: 18 March 2008 / Accepted: 12 April 2008 / Published online: 4 June 2008
© 2008 Springer Science + Business Media, LLC. Manufactured in The United States

Abstract The H.264/AVC Fractional Motion Estima-
tion (FME) with rate-distortion constrained mode
decision can improve the rate-distortion efficiency by
2–6 dB in peak signal-to-noise ratio. However, it comes
with considerable computation complexity. Accelera-
tion by dedicated hardware is a must for real-time
applications. The main difficulty for FME hardware im-
plementation is parallel processing under the constraint
of the sequential flow and data dependency. We ana-
lyze seven inter-correlative loops extracted from FME
procedure and provide decomposing methodologies to
obtain efficient projection in hardware implementa-
tion. Two techniques, 4×4 block decomposition and
efficiently vertical scheduling, are proposed to reuse
data among the variable block size and to improve
the hardware utilization. Besides, advanced architec-
tures are designed to efficiently integrate the 6-taps 2D

Y.-H. Chen (B) · T.-C. Chen · S.-Y. Chien ·
Y.-W. Huang · L.-G. Chen
DSP/IC Design Lab., Graduate Institute of Electronics
Engineering and Department of Electrical Engineering,
National Taiwan University, 1, Sec. 4, Roosevelt Rd.,
Taipei 10617, Taiwan
e-mail: ttchen@video.ee.ntu.edu.tw

T.-C. Chen
e-mail: djchen@video.ee.ntu.edu.tw

S.-Y. Chien
e-mail: sychien@video.ee.ntu.edu.tw

Y.-W. Huang
e-mail: yuwen@video.ee.ntu.edu.tw

L.-G. Chen
e-mail: lgchen@video.ee.ntu.edu.tw

finite impulse response, residue generation, and 4×4
Hadamard transform into a fully pipelined architec-
ture. This design is finally implemented and integrated
into an H.264/AVC single chip encoder that supports
realtime encoding of 720×480 30fps video with four
reference frames at 81 MHz operation frequency with
405 K logic gates (41.9% area of the encoder).

Keywords H.264/AVC · Motion estimation ·
VLSI architecture · Video coding

1 Introduction

Digital video compression techniques play an impor-
tant role that enables efficient transmission and storage
of multimedia content in bandwidth and storage space
limited environment. The newly established video cod-
ing standard, H.264/AVC [1–3], which is developed
by the Joint Video Team significantly outperforms
previous standards in both compression performance
and subjective view. It can saves 25%–45% and 50%–
70% of bitrates when compared with MPEG-4 [4]
and MPEG-2 [5], respectively. While highly interactive
and recreational multimedia applications appear much
faster than expected, H.264/AVC starts to play an im-
portant role in this area due to its higher compression
ratio and better video quality. .

The improvement in compression performance
mainly comes from the new functionalities, but these
new functionalities, especially inter prediction, cause
significantly large computation complexity. In H.264/
AVC, inter prediction, which is also called Motion
Estimation (ME), can be divided into two parts —
Integer ME (IME) and Fractional ME (FME). The

336 Y.-H. Chen et al.

Figure 1 The rate-distortion
curves under three predicted
resolution : integer pixel, half
pixel, and quarter pixel. Four
sequences with different
characteristics are used for
the experiment. Foreman
stands for general sequence
with media motions. Mobile
and Optis have complex
textures. Soccer has large
motions. The parameters
for above sequences are
30frames/s, 1 reference
frames and low complexity
mode decision. For QCIF, D1
and HD 720p sequences, the
search range is ±16-pel,
±32-pel and ±64-pel,
respectively. a Foreman
(QCIF). b Mobile (QCIF).
c Soccer (D1). d Optis
(HD 720p).

28

30

32

34

36

38

40

42

44

28

30

32

34

36

38

40

42

44

28

30

32

34

36

38

40

42

44

30 280 530 780 1030

200 1200 2200 3200 4200 5200 200 6200 12200 18200 24200

(Kbps)

(Kbps) (Kbps)

(dB)

(dB) (dB)

Quarter Pixel

Half Pixel

Integer Pixel

28

30

32

34

36

38

40

42

44

200 700 1200 1700 2200 (Kbps)

(dB)

Quarter Pixel

Half Pixel

Integer Pixel

(a) (b)

(c) (d)

Integer Precision

Half Precision

Quarter Precision

Integer Precision

Half Precision

Quarter Precision

IME searches for the initial prediction in coarse reso-
lution. Then, FME refines this result to the best match
in fine resolution. Several fast algorithms and hardware
architectures are proposed for H.264/AVC IME [6–9],
but not for FME. According to our analysis, the FME
occupies 45% [10] of the run-time in H.264/AVC in-
ter prediction and upgrades rate-distortion efficiency
by 2–6 dB in peak signal-to-noise ratio as shown
in Fig. 1. However, the FMEs in previous standards
contribute only a very small computation complexity.
Besides, the Variable Block Sizes (VBS), Multiple
Reference Frames (MRF) [11], Lagrangian mode deci-
sion [12, 13], and many other encoding issues are not
involved. Therefore, the traditional FME architec-
tures [14, 15] cannot efficiently support H.264/AVC.
Obviously, the new and advanced architecture of FME
unlike previous standards is urgently demanded in the
H.264/AVC compression system.

The main difficulty for the hardware implementation
of FME is parallel processing under the constraint of
the sequential mode decision flow and data depen-
dency. The Lagrangian mode decision is done after
the costs of all blocks and sub-blocks in every ref-
erence frame with quarter-pel precision are derived.
According to our analysis, the FME flow contains seven
inter-correlative loops including interpolation, residue

generation, and Hadamard transform. Several tech-
niques including 4×4 block decomposition and effi-
cient vertical scheduling are proposed to efficiently
parallelize several loops in the hardware. The corre-
sponding architecture is designed with features of high
utilization, fully pipelined, and reusability.

The rest of this paper is organized as follows. The
background, including the related functionality and
mode decision flow, is introduced in Section 2. In
Section 3, seven loops sketching the FME procedure
are analyzed. Then, the efficient architecture includ-
ing Motion Compensation function is proposed in
Section 4. The implementation and integration results
will be shown in Section 5. Finally, conclusions are
drawn in Section 6.

tt-1t-2t-3t-4

Figure 2 MRF ME.

VLSI design of fractional motion estimation 337

16x16 16x8 8x16 8x8

8x8 8x4 4x8 4x4

Figure 3 VBS ME.

2 Overview of H.264/AVC FME

In this section, technical overview of H.264/AVC FME
will be introduced. Then, the whole procedure includ-
ing mode decision flow will be described and the com-
putation complexity through profiling will be shown.

2.1 Functionality Overview

In H.264/AVC, FME supports quarter-pixel accuracy
with VBS and MRF. For MRF-ME shown in Fig. 2,
more than one prior reconstructed frames can be used
as reference frames. This tool is effective for the un-
covered backgrounds, repetitive motions, and highly
textured areas [16]. For VBS-ME, the block size in
H.264/AVC ranges from 16×16 to 4×4 luminance sam-
ples. As shown in Fig. 3, the luminance component of
each Macroblock (MB) can be selected from four kinds
of partitions: 16×16, 16×8, 8×16, and 8×8. For the
partition 8×8, each 8×8 block can be further split into
four kinds of sub-partitions: 8×8, 8×4, 4×8, and 4×4.
This tree-structured partition leads to a large number
of possible combinations within each MB. In general,

i1 i2 i3 i4 i5 i6h1

h2

h3

h4

h5

h6

h0

h1 = round((i1-5xi2+20xi3+20xi4-5xi5+i6+16)/32)
h0 = round((h1-5xh2+20xh3+20xh4-5xh5+h6+16)/32)

i1 i2h1

h3

i3 i4h5

h2 h4

q1

q4q2 q3

i# : Integer pixel

f# : half pixel
q# : quarter pixel

q1 = (i1+h1+1) / 2

q2 = (i1+h2+1) / 2

q4 = (h1+h3+1) / 2

q3 = (h1+h2+1) / 2

(a) (b)

Figure 4 Interpolation scheme for luminance component: a 6-tap
FIR filter for half pixel interpolation b Bilinear filter for quarter
pixel interpolation.

large blocks are appropriate for homogeneous areas,
and small partitions are beneficial for textured area and
objects of variant motions. The accuracy of motion
compensation is in quarter-pel resolution for H.264/
AVC, which can provide significantly better compres-
sion performance, especially for pictures with complex
texture. Six-tap finite impulse response (FIR) filter is
applied for half pixel generation as shown in Fig. 4a,
and bilinear filter for quarter pixel generation as shown
in Fig. 4b. Quarter-pel resolution Motion Vectors
(MVs) in the luminance component will require eighth-
pel resolution in each chrominance component.

The mode decision algorithm is left as an open is-
sue in H.264/AVC. In the reference software [17], the
Lagrangian cost function is adopted. Given the quan-
tization parameter QP and the Lagrange parameter
λMODE (a QP dependent variable), the Lagrangian
mode decision for a MB MBk proceeds by minimizing

JMODE(MBk, Ik|QP, λMODE)

= Distortion(MBk, Ik|QP) + λMODE

· Rate(MBk, Ik|QP)

where the MB mode Ik denotes all possible coding
modes and MVs. The best MB mode is selected by
considering both the distortion and rate parts. Due to
the huge computation complexity and sequential issues
in the high complexity mode of H.264/AVC, it is less
suitable for real-time applications. In this paper, we
focus on low complexity mode decision. The distor-
tion is evaluated by the Sum of Absolute Transformed
Differences (SATD) between the predictors and origi-
nal pixels. The rate is estimated by the number of
bits required to code the header information and the
MVs. Figure 5 shows the best partition for a picture
with different quantization parameters. With larger QP,
the mode decision tends to choose the larger block or
the modes with less overhead in the MB header. In
contrast, when the QP is small, it tends to choose the
smaller block for more accurate prediction.

2.2 FME Procedure in Reference Software

Figures 6 and 7 show the refinement flow and procedure
of FME in the H.264/AVC reference software [17],
respectively. To find the sub-pixel MV refinement of
each block, a two-step refinement is adopted for every
block. In Fig. 6, the half-pixel MV refinements are
performed around the best integer search positions, I,
from IME results. The search range of half-pixel MV
refinements are ±1/2 pixel along both horizontal and
vertical directions. The quarter-pixel ME, as well, is

338 Y.-H. Chen et al.

Figure 5 Best partition
for a picture with different
quantization parameters
(black block: inter block, gray
block: intra block). a QP = 0.
b QP = 25. c QP = 51.

(a) (b) (c)

then performed around the best half search position
with ±1/4 pixel search range. Each refinement has nine
candidates, including the refinement center and its eight
neighborhood, for the best match.

In Fig. 7, the best MB mode is selected from five can-
didates: Inter8×8, Inter16×16, Inter16×8, Inter8×16,
and skip mode, denoted as S1–S5. In S1 procedure,
each 8×8 block should find its best sub-MB mode from
four choices: Sub4×4, Sub4×8, Sub8×4, and Sub8×8,
denoted as a–d. Thus, nine sub-blocks are processed for
each 8×8 block, and a total of 41 blocks and sub-blocks
are involved per reference frame. The inter mode deci-
sion is done after all costs are computed in quarter-pel
precision in all reference frames. Please note that the
sub-blocks in each 8×8 block should be within the same
reference frame.

Based on reference software, the derivation of
matching cost of each candidate can be shown as
Fig. 8. The reference pixels are interpolated to pro-
duce fractional pixels for each search candidate.
Afterward, residues are generated by subtracting the
corresponding fractional pixels from current pixels.
Then, the absolute values of the 4×4-based Hadamard
transformed residues are accumulated as distortion cost
called SATD. The final matching cost is calculated by
adding the SATD with the MV cost. Taking MV cost
into consideration improves the compression perfor-

IH H

HHH

H H H

Q

Q

Q

Q Q

Q

QQ

Q

Q

H

I
Candidate in integer
pixel resolution

Candidate in integer
pixel resolution

Candidate in integer
pixel resolution

Figure 6 FME refinement flow for each block and sub-block.

mance for VBSME, but brings many data dependencies
among blocks because of the MV predictor defined in
H.264/AVC standard. The cost can be correctly derived
only after prediction modes of the neighboring blocks
are determined.

2.3 Profiling

We use iprof, a software analyzer at the instruction
level, to generate the profiling of an H.264/AVC en-
coder at a processor-based platform (SunBlade 2000
workstation, 1.015 GHz Ultra Sparc II CPU, 8 GB
RAM, Solaris 8). The instructions are divided into
three categories - computing (arithmetic and logic
operations), controlling (jump and branch), and mem-
ory access (data transfer such as load and store).
Table 1 shows the result of instruction profiling. Ac-
cording to the profiling result, the encoding complexity
of H.264/AVC is about ten times more complex than
MPEG-4 [18]. The high complexity comes from inter
prediction with MRF and VBS. For FME, the com-
plexity is proportional to the product of the number of
block types and the number of reference frames. The
required huge computation is far beyond the capability
of today’s General Purpose Processors, not to mention

 a. Sub4x4 : Refine four sub-blk4x4
 b. Sub4x8 : Refine two sub-blk4x8
 c. Sub8x4 : Refine two sub-blk8x4
 d. Sub8x8 : Refine sub-blk8x8
 e. Mode decision for blk8x8

Up-left 8x8
Procedures

Up-right 8x8
Procedures

Down-left 8x8
Procedures

Down-right 8x8
Procedures

 S2. Inter16x16 : Refine blk16x16

S1. Inter8x8 : Refine four blk8x8

 S3. I nter16x8 : Refine two blk16x8

 S4. Inter8x16 : Refine two blk 8x16

 S5. Check Skip Mode

Sets of
IMV

 S6. Final Mode Decision for a MB
MV s and ref-frames of

best predicted MB

Figure 7 FME procedure of Lagrangian inter mode decision in
H.264/AVC reference software.

VLSI design of fractional motion estimation 339

Hadamard
Transform

Interpolation

+

Rate Cost
(Mode & MVs)

Reference Pixels

Neighboring
MVCurrent

Pixels

Distortion
(SATD)

Residues

Fractional
pixels

Matching
Cost

+

Absolute &
Accumulate

6-tap
2D FIR

Pixel
Operation

4x4 Array
Operation

Data
Dependancy

Figure 8 The matching cost flowchart of each candidate.

about the higher specification such as HDTV applica-
tions. The hardware accelerator of FME is definitely
required.

3 FME Procedure Decomposition

According to the analysis in the previous sections, the
FME in H.264 greatly enhances the rate distortion
efficiency, but also contributes to considerable compu-
tation complexity. Obviously, the FME of H.264/AVC
must be accelerated by the dedicated hardware. The
main challenge here is to achieve parallel processing
under the constraints of sequential FME procedure.
The hardware utilization and control regularity must be
well considered during the realization of the VBS func-
tionality. Since the data throughput of 6-taps 2D FIR
filter, residue generation and 4×4 Hadamard transform
are quite different, it is hard to integrate these func-
tional blocks into a fully pipelined design. In this sec-
tion, we will simplify the complex encoding procedure
into several encoding loops, and two decomposing tech-

niques are proposed to parallelize the algorithm while
maintaining high hardware utilization and achieving
vertical data reuse.

3.1 Analysis of Encoding Loops

Based on the operating flow in H.264/AVC reference
software, we can decompose the entire FME procedure
in Figs. 6, 7 and Fig. 8 into seven iteration loops as
shown in Fig. 9a. The first two loops are reference
frames and the 41 blocks with seven different sizes,
respectively. The third loop is the refinement procedure
of half-pixel precision and then quarter-pixel precision.
The next two loops are the 3×3 candidates of each
refinement process. The last two loops are iterations
of pixels for each candidate, and range from 16×16 to
4×4. The main tasks inside the most inner loops are the
fractional pixel interpolation, residue generation, and
Hadamard transform. Note the three main tasks have
different input/output throughput rates.

For the realtime constraint, some of the loops must
be unrolled and efficiently mapped into the parallel
hardware. The costs of a certain block in different ref-
erence frames can be processed independently. There-
fore, the first loop can be easily unrolled for parallel
processing by duplicating multiple basic FME Process-
ing Units (PUs) for MRF issue. For the second loop,
since 41 MVs of variable block types may point to
different position, the required memory bitwidth of
Search Window will be too large if the reference pixels
of VBS are read in parallel. Besides, the definition of
MV predictors also force the 41 MVs to be processed
sequentially. The third loop should still be processed
sequentially because quarter refinement is based on
result of half refinement.

In original FME procedure, the costs of 3×3 search
candidates are processed independently. However, the

Table 1 Instruction profile of an H.264/AVC baseline profile encoder.

Functions Arithmetic Controlling Data transfer

MIPS % MIPS % MIPS MByte/s %

Integer-Pel ME 95,491.9 78.31 21,915.1 55.37 116,830.8 365,380.7 77.53
Fractional-Pel ME 21,396.6 17.55 14,093.2 35.61 30,084.9 85,045.7 18.04
Fraction-Pel interpolation 588.0 0.46 586.6 1.48 729.7 1,067.6 0.23
Lagrangian mode decision 674.6 0.55 431.4 1.09 880.7 2,642.6 0.56
Intra prediction 538.0 0.44 288.2 0.73 585.8 2,141.8 0.45
Variable length coding 35.4 0.03 36.8 0.09 44.2 154.9 0.03
Transform & quantization 3,223.9 2.64 2,178.6 5.50 4.269.0 14,753.4 3.13
Deblocking 29.5 0.02 47.4 0.12 44.2 112.6 0.02
Total 121,948.1 100.00 39,577.3 100.00 153,469.3 471,299.3 100.00

PS : The encoding parameters are CIF, 30frames/s, 5 reference frames, ±16-pel search range, QP=20, and low complexity mode
decision. MIPS stands for million instructions per second.

340 Y.-H. Chen et al.

Parallelized as
hardware engine

Mapped to
FSM

Loop1 (Reference Frame)

Loop6 (9 candidates for each refinement)
Loop7 (4 Pixels in a row)
{ Sub-Pixel Interpolation
 Residue Generation
 Hadamard Transform }

Loop2 (41 MVs of Different Block Sizes)
Loop3 (Half- or Quarter-Precision)

Loop5 (Height of a Block or Subblock)
Loop4 (Horizontal rows of 4-pixels)

Loop1 (Reference Frame)
Loop2 (41 MVs of Different Block Sizes)

Loop4 (3 Vertical Search Positions)
Loop5 (3 Horizontal Search Positions)

Loop3 (Half- or Quarter-Precision)

Loop6 (Height of a Block or Subblock)
Loop7 (Width of a Block or Subblock)
{ Sub-Pixel Interpolation
 Residue Generation
 Hadamard Transform }

Left for
adaptability

(a) (b)
Figure 9 a Original FME procedure. b Rearranged FME procedure with 4×-block decomposition and vertical data reuse.

interpolated pixels for the nine search candidates are
highly overlapped. As shown in Fig. 10, the search
candidates, which are numbered as 1, 3, 7, 9, have more
than nine overlapped interpolated pixels in one 4 × 4
block. It is beneficial to parallel processing these nine
search candidates because the interpolated pixels can
be greatly reused for adjacent candidates to save re-
dundant computations and processing cycles. For the
last two loops, the iteration numbers depend on block
size. Here we propose two techniques to decompose the
iteration loops and improve hardware utilization in the
following two subsections.

3.2 4×4-Block Decomposition

In H.264/AVC, the 4×4 block is the smallest element
for all blocks, and the SATD is also based on 4×4 trans-
form blocks. Every block and subblock in a MB can be

Figure 10 The example of overlapped interpolated pixels
between different search candidates in a 4 × 4 block. The squares
are the integer pixels, and the circles represent interpolated half
pixels. Each search candidate requires 4 × 4 pixel data. Nine
search candidates which are listed from 1 to 9 are processed to
compare cost. The numbers listed in each circle are the search
candidate numbers to which the corresponding interpolated pixel
belongs.

decomposed into several 4×4-elements with the same
MV. Therefore, we can concentrate on designing a 4×4-
element PU and then apply the folding technique to
reuse the 4×4-element PU for all block sizes. Figure 11
takes one 4×8 block as an example. One 4×8 block is
decomposed into the upper and bottom 4×4 element
blocks. These 4×4 element blocks are processed in the
sequential order, and the corresponding SATDs are
accumulated for the final costs.

According to the loop analysis, we will arrange nine
4×4-element PUs to process the 3×3 candidates simul-
taneously. In this way, the interpolated half pixels can
be reused by these 4×4-element PUs. The redundant
computation of interpolation can be saved, and the
memory bandwidth to access reference integer pixels
can be reduced. Because of the limited output bit-width
of internal memory and whole encoder consideration
[19], search window memory is assumed to support 1-D
random access in this design. Thus, only the adjacent
integer pixels in the same horizontal row can be ac-
cessed in one cycle. Therefore, each 4×4-element PU
is designed to simultaneously process four horizontally
adjacent pixels for residue generation and Hadamard
transform. In this way, most horizontally adjacent inte-
ger pixels can be reused by horizontal filters, and the
bandwidth requirement of search window memory can
be further decreased.

Figure 11 4×4 block decomposition of a 4x8 sub-block.

VLSI design of fractional motion estimation 341

Figure 12 Main concepts of FME design: a 4×4-block decompo-
sition; b vertical data reuse.

For a single 4×4 block, in order to interpolate the re-
quired pixels for nine candidates with 6-taps FIR filter,
10×10 integer pixels are required. As shown in Fig. 11,
the dotted square denotes the required integer pixels
for interpolation, which is called interpolation window.
The dotted arrow denotes the interpolation operation
while the solid arrow represents the residue generation
and Hadamard transform. The interpolation procedure
dominates the operation time. Since a row of horizontal
integer pixels can be accessed in one cycle, ten cycles
are required to process one 4×4-element. It requires 20
cycles to process a 4×8 sub-block.

3.3 Efficient Scheduling for Vertical Data Reuse

After the 4×4-block decomposition, redundant inter-
polation operations appear in the overlapped area of
adjacent interpolation windows. As shown in Fig. 12a,
one 8×8 block will be divided into four 4×4-elements
with the corresponding interpolation windows. The
solid square with slash denotes the half pixels gen-
erated in the processes of both the upper and bot-
tom 4×4-elements. Please note that the operation time

is dominated by the interpolation. If the overlapped
interpolation results can be reused, both the hardware
utilization and the throughput will be increased.

As shown in Fig. 12b, the interpolation windows of
vertically adjacent 4×4-elements are integrated. Four-
teen cycles used to access 10×14 integer pixels are
required for each 4×8-element, and totally 28 (14×2)
cycles are required for one 8×8 block. After efficient
scheduling for vertical data reuse, 30% of the cycles
are saved, and the PU’s utilization is improved from
40% to 57% for 8×8 block. In fact, the improvement
varies with the height of each block, and is summarized
in Table 2. The average utilization of 4×4-PUs and
interpolation circuit are 54% and 100%, respectively.

Figure 9b shows the rearranged loops. In summary,
there will be nine PUs to process the nine candidates
in parallel. In one candidate, four horizontally adjacent
pixels are handled simultaneously. The upper region of
the rearranged loops will be mapped to a finite state
machine as a control unit, and the lower gray part will
be accelerated by the dedicated computing unit with
a total of 36 times of parallelism in terms of residue
generation. Please note that the reference frame loop
is left to be adaptively adjusted according to the specifi-
cation. The FME tasks in different reference frames can
be either parallelized by multiplying the computational
cores or scheduled by FSM.

4 Hardware Architecture of Parallel FME Unit

In this section, we will describe the proposed architec-
ture for FME module with the procedure characterized
by regular flow and efficient hardware utilization, which
we mentioned in previous section. Figure 13 shows
the block diagram of parallel FME unit comprised
of nine 4×4-block PUs per reference frame to thor-
oughly parallelize the rate-constrained mode decision.

Table 2 Hardware utilization of different block sizes.

Block 4x4 block decomposition With vertical data reuse
size

Blocks / Cycles / PU Interpolation Blocks / Cycles / PU Interpolation
MB block utilization (%) utilization (%) MB block utilization (%) utilization (%)

16×16 16 10×1 40 100 1 22×4 73 100
16×8 16 10×1 40 100 2 14×4 57 100
8×16 16 10×1 40 100 2 22×2 73 100
8×8 16 10×1 40 100 4 14×2 57 100
8×4 16 10×1 40 100 8 10×2 40 100
4×8 16 10×1 40 100 8 14×1 57 100
4×4 16 10×1 40 100 16 10×1 40 100
Total 1120 40 100 832 54 100

Total operation time for FME: 832 × 2 = 1664 cycles/MB

342 Y.-H. Chen et al.

4x4
Block
PU0

4x4
Block
PU1

4x4
Block
PU8

. . .

ACC0 . . .

Best Mode
Buffer

MV Cost
Generator

Mode Cost
Generator

ACC1 ACC8

Lagrangian mode
decision

Best Mode Info.

MC Mux

Intepolation

Reference Pixels
(10 pixel)

Original Pixels
(4 pixel)

MC Predictors
(4 pixels)

Best Mode Info.

Figure 13 Block diagram of the FME engine.

All side information and the SATD are considered
in the matching criterion. The loops of 3×3 search
points are unrolled, so there are nine 4×4-block PUs
to process nine candidates around the refinement cen-
ter. Each 4×4-block PU is responsible for the residue
generation and Hadamard transform of each candi-
date. The interpolation engine generates the half or
quarter reference pixels based on current refinement
step. These interpolated pixels are shared by all 4×4-
block PUs to achieve data reuse and local bandwidth
reduction. ACC accumulates the SATD value of each
decomposed 4×4 element block. The final candidate
cost is generated after the corresponding MV cost is
added. The “Lagrangian mode-decision” engine is re-
sponsible for the sequential procedures of the 1st–5th
loops in Fig. 9b. The information of best match block
is latched in the “BEST Mode Buffer”. In order to
achieve resource sharing (reuse interpolation engine)
and system bandwidth reduction (reuse search window
memory), motion compensation is allocated in the same
MB pipeline stage [20]. The predicted pixels for mo-
tion compensation are generated by the interpolation
engine and then selected by “MC Mux” according to
the information in the “BEST Mode Buffer”. The com-
pensated MB will be buffered and transmitted to the
next stage for the rest coding procedure.

The architecture of each 4×4 PU is shown in Fig. 14.
Four subtractors generate four residues in each cycle
and transmit them to the 2-D Hadamard transform

unit. The 2-D Hadamard transform unit [21] contains
two 1-D transform units and one transposed register
array. For each 4×4 block, the first 1-D transform
unit filters the residues row by row and the second
1-D transform unit processes the transformed residues
column by column. The data path of the transposed
registers can be configured as rightward shift or down-
ward shift. The two configurations interchange with
each other every four cycles. First, the rows of 1-D
transformed residues of the first 4×4 block are writ-
ten into transpose registers horizontally. After four
cycles, the columns of 1-D transformed residues are
read vertically for the second 1-D Hadamard transform.
Meanwhile, the rows of 1-D transformed residues of the
second 4×4 block are written into transposed registers
vertically. In this way, the Hadamard transform unit is
fully pipelined with residue generators. The latency of
the 2-D transform is four cycles, and there is no bubble
cycle between vertically adjacent 4×4 blocks.

Figure 15a shows the parallel architecture of 2-D
interpolation engine. The operations of 2-D FIR fil-
ter are decomposed into two 1-D FIR filters with the
interpolation shifting buffer array. A row of ten hor-
izontally adjacent integer pixels are input to generate
five horizontal interpolated half pixels simultaneously.
These five half pixels and six neighboring integer pixels
are latched and shifted downward in the “V-IP Unit”
as shown in Fig. 15b. After the latency of six cycles,
the eleven vertical filters generate 11 vertical half pix-
els by filtering the six pixels within the corresponding
“V-IP Units”. The dotted rectangle in the bottom of

1-D Hadamard

1
- D

 H
 a

 d
 a

 m
 a

 r d

SATD

Residue generator X4

| |

| |

| |

| |

- - - -

+

+
+

2-D Hadamard Transform Unit

Row of Four Cur. MB Pels &
Four Interpolated Ref. Pels

Figure 14 Block diagram of 4×4-block PU.

VLSI design of fractional motion estimation 343

Figure 15 Block diagram of
interpolation engine (a, b).

HFIR HFIR HFIR HFIR HFIR

V
 - I

 P
 U

 n
 i t

 0
 1

V
 - I

 P
 U

 n
 i t

 0
 2

V
 - I

 P
 U

 n
 i t

 0
 3

V
 - I

 P
 U

 n
 i t

 0
 4

V
 - I

 P
 U

 n
 i t

 0
 5

V
 - I

 P
 U

 n
 i t

 0
 6

V
 - I

 P
 U

 n
 i t

 0
 7

V
 - I

 P
 U

 n
 i t

 0
 8

V
 - I

 P
 U

 n
 i t

 0
 9

V
 - I

 P
 U

 n
 i t

 1
 0

V
 - I

 P
 U

 n
 i t

 1
 1

I

V

V

H

V

V

I

V

V

H

V

V

I

V

V

H

V

V

I

V

V

H

V

V

I

V

V

H

V

V

I

V

V

Quarter Pixel
Bilinear

Interpolation
Engine

Mux
Half Or Quarter 4x4-PUs

Integer Pixel Input Shift Register HFIR Horizontal FIR VFIR Vertical FIR

I H VInteger Pixel Horizontally Filtered Half Pixel Vertically Filtered Half Pixel

V
 F

 I R

V-IP Unit

(a) (b)

Fig. 15a represents the reference pixels for half-pixel
refinement in one cycle. For quarter-pixel refinement,
another bilinear filtering engine with input from the
dotted rectangle is enabled to generate quarter pixels.
For larger blocks, a folding technique is applied to
iteratively utilize the interpolation circuits and PUs. An
efficient vertical scheduling in Section 3.3 is proposed to
reuse interpolated pixels in the “V-IP Units”, and 26%
of cycles can be saved according to Table 2.

5 Implementation Results and Discussion
of Reusability

5.1 Implementation Results

The proposed architecture of FME unit in Fig. 13 is
implemented by UMC 0.18μ 1P6M technology. This
architecture can support complete FME procedure de-
scribed in Section 2.2, and provide the highest compres-
sion performance. The motion compensation engine is
included to share hardware resource and save system

Table 3 Gate count profile of the FME unit.

Functional block Gate counts Percentage (%)

Interpolation unit 23872 30.08
MVCost generator 6477 8.16
4×4-PU x 9 (w. ACC) 34839 43.89
Mode decision engine 2174 2.74
Central control 1538 1.94
InOut buffer 10472 13.19
Total 79372 100.00

bandwidth. The gate count profile is listed in Table 3.
The interpolation engine and 4×4 block PUs contribute
74% gate count of the whole FME unit, while the
Hadamard transform occupies 85% gate count in the
4×4 block PUs. This FME unit has 36 times of parallel-
ism per reference frame in terms of residue generation.
The proposed FME engine can support SDTV 720 ×
480 30 fps with all MB modes for one reference frame
under 77 MHz and this is the first hardware solution for
H.264/AVC FME [22]. Table 4 also shows the compar-
ison between the proposed architecture and the newest
one. The improved one can further support the higher
specifications via higher horizontal parallelism.

5.2 Reusability for Fast Algorithm

The proposed FME engine is based on H.264 reference
software to provide full functionality. However, some

Table 4 Comparison between the proposed architecture and the
newest one.

Proposed [22] [23]
ICASSP-04 ISCAS-06

Technology UMC 0.18 um TSMC 0.18 um
Clock freq. 100 MHz 285 MHz
Gate counts 79372 188456
Parallelism 4 16
Frame size 720×576 HD1080p
Frame rate 30fps 30fps
Max. performance 52k MB/s 250k MB/s

unit : NAND2 gate count

344 Y.-H. Chen et al.

31

33

35

37

32

34

36

38

60 110 300 800 1300 1300160 210 260 (Kbps)
(Kbps)

(dB)
(dB)

Full Functionalities
Hvbi
noSATD
noVBS
MDinIME

(a) (b)

Full Functionalities
Hvbi
noSATD
noVBS

Figure 16 Analysis of the rate-distortion efficiencies among dif-
ferent functionalities of FME. HVBi: Use bilinear filter instead
of 6-tap FIR in FME; noSATD: Use SAD instead of SATD as
distortion cost; noVBS: Use only 16 × 16 and 8 × 8 block sizes;
MDinIME: Mode decision is done in IME phase instead of FME

phase. The parameters for above sequences are 30frames/s, 1
reference frames and low complexity mode decision. The search
range is ±16-pel and ±32-pel for QCIF and D1 format, respec-
tively. a Foreman (QCIF). b Soccer (D1).

trade-offs between hardware cost and compression per-
formance can be made by modifying the related encod-
ing algorithms. Three methods are taken as examples
here. First, the hardware of complex 2-D 6-tap FIR
filter can be replaced by simpler bilinear interpolation
scheme. It can save 11 vertical FIR and most inter-
polation buffer, and reduce about 15% hardware cost.
Second, we can use sum-of-absolute-difference (SAD)
instead of SATD to estimate the bit-rate influenced by
DCT. Thus, the Hadamard transform can be removed
and about 40% hardware cost can be saved. Third, since
the FME unit is decomposed into 4 × 4 block size and
controlled by FSM as shown in Fig. 9, we can decide
how many MB modes are skipped in FME operating
procedure to save power consumption and processing
cycles without changing the proposed architecture. For
example, we can perform FME on 16 × 16 and 8 × 8
modes like MPEG-4 or on only the best MB mode
from IME. Figure 16 demonstrates the corresponding
rate-distortion performances of above three cases and
full functionality mode. Because adopting bilinear fil-
ter or SAD results in apparent quality degradation,

it is better to cooperate the proposed FME unit with
FME fast algorithm of early-termination mechanism
while maintaining coding performances in our newest
work [24].

5.3 Reusability for Different Specifications

According to the analysis in Session 3.1, the FME
procedures in different reference frames can be either
parallelized by duplicating the FME units or scheduled
by FSM with one FME unit. Therefore, our FME unit
can be reused for different specifications. Table 5 lists
some possible specifications with the corresponding
solutions. The processing cycles of each case can be
calculated by summing the required cycles of supported
block sizes, skip mode, and motion compensation. Take
case (a) as example, each refinement cycles of 16×16,
16×8, 8×16 and 8×8 modes are 88×1, 56×2, 44×2,
and 28×4, respectively (please referred to Table 2).
Because of half/quarter refinements, the number of
cycles is then multiplied by two. The cycles required
by the skip mode in P-frame is the same as one 16×16

Table 5 Reusability of the proposed FME unit among some possible applications.

Specification Functionality # FME units Cycles/MB Frequency

(a) HDTV(1280 × 720 30fps) MRF(3), VBS(16 × 16–8 × 8) 3 1000 108 MHz
(b) SDTV(720 × 480 30fps) MRF(4), VBS(all) 4 1912 77.4 MHz
(c) CIF(352 × 288 30fps) MRF(4), VBS(all) 2 3576 42.5 MHz
(d) QCIF(176 × 144 30fps) MRF(5), VBS(all) 1 8568 25.4 MHz
(e) QCIF(176 × 144 30fps) MRF(5), VBS(all) 5 1912 5.7 MHz

VLSI design of fractional motion estimation 345

MV Cost
Gen.

RefMV
Buffer

Interpolation

Luma Ref. Pels SRAMs
(Shared with IME)

Router

Cur. Luma MB Pels
(from IME)

Best Inter Mode
Information Buffer

Inter Mode Decision Results
(to IP)

Cur.
Luma MB

SRAM

FME
Controller

Encoding Parameters
(from Main Control and IME)

Mode Cost
Gen.

MC
Luma MB

SRAM

MC Luma MB Pels
(to IP)

4x4-Block
PU #8

Ref. Cost
Gen.

9x4
MV Costs

4 Ref. Costs 9x4 Candidate Costs

4x4-Block
PU #0

4x4-Block
PU #3

4x4-Block
PU #1

4x4-Block
PU #4

4x4-Block
PU #2

4x4-Block
PU #5

4x4-Block
PU #7

4x4-Block
PU #6

Rate-Distortion Optimized Mode Decision

Figure 17 Block diagram of the FME pipeline stage for a single
chip H.264 encoder.

block refinement, while that of motion compensation is
the same as one 8×8 block refinement in the worst case.
Summing up these components is 1000 cycles. In case
(a), three FME units are connected in parallel and each
of which is responsible for the task of one reference
frame. On the contrary, case (d) represents that a single
FME unit processes the tasks of different reference
frames sequentially. Thus, more computing cycles are
required for one MB, and higher operating frequency
is induced compared to case (e). But the hardware cost
of case (d) is only one-fifth of case (e).

The proposed architecture has been successfully in-
tegrated into a single chip H.264 encoder [19]. This en-
coder can real-time process 720×480 30fps video with
four MRFs at 81 MHz operation frequency as the case
(b) in Table 5. Four-MB pipelined scheme is adopted to
separate whole encoding procedure into several tasks
with their corresponding accelerators [20]. The block
diagram of FME pipeline stage is shown in Fig. 17.
41×4 pairs of integer MVs are input from IME pipeline
stage, and then the FME refinement procedures are
enabled. Four FME units are responsible for four ref-
erence frames. The mode decision is finished after all
block sizes including skip mode are processed. Then the
motion compensation is performed. The search window
SRAMs of luminance reference pixels are embedded
and shared with IME pipeline stage to reduce the sys-
tem bandwidth. The FME results, including the best
predicted mode, the corresponding MV’s, and motion
compensated pixels, are stored in the buffers and then
transmitted to the next stage for the reconstruction and
entropy coding procedure. The total gate count of FME
stage is 405K gates and occupies 41.91% area of the
whole encoder.

6 Conclusion

This paper presents a VLSI architecture design for
FME of H.264/AVC. According to our analysis, FME
can significantly increase the compression performance
with considerable computation complexity. However,
acceleration by parallel hardware is a tough job because
of the sequential Lagrangian mode decision flow. We
analyze the processing loops and provide decomposing
methodologies to obtain the optimized projection in
hardware implementation. The 4×4 decomposition is
proposed for hardware regularity and reusability for
VBS, while efficiently vertical scheduling are applied
to reuse data and to increase hardware utilization. The
corresponding fully pipelined architecture is designed
as the first FME hardware solution and implemented
in UMC 0.18μ 1P6M technology. Four such FME units
can support all FME functionalities of baseline profile
Level 3 at 81 MHz operation frequency.

References

1. Joint Video Team (2003). Draft ITU-T recommendation and
final draft international standard of joint video specification,
ITU-T Recommendation H.264 and ISO/IEC 14496-10 AVC
(May).

2. Wiegand, T., Sullivan, G. J., Bjøntegaard, G., & Luthra, A.
(2003). Overview of the H.264/AVC video coding standard.
IEEE Transactions on Circuits and Systems for Video Tech-
nology (CSVT), 13(7), 560–576 (July).

3. Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke,
M., Pereira, F., et al. (2004). Video coding with H.264/AVC:
Tools, performance, and complexity. IEEE Magazine on
Circuits and Systems Magazine, 4, 7–28.

4. ISO (1999). Information technology - coding of audio-visual
objects - Part 2: Visual. ISO/IEC 14496-2.

5. ISO (1996). Information technology - generic coding of
moving pictures and associated audio information: Video.
ISO/IEC 13818-2 and ITU-T Rec. H.262.

6. Choi, W.-I., Jeon, B., & Jeong, J. (2003). Fast motion esti-
mation with modified diamond search for variable motion
block sizes. In Proceedings of IEEE international conference
on image processing (ICIP’03), (pp. 371–374).

7. Huang, Y.-W., Wang, T.-C., Hsieh, B.-Y., & Chen, L.-G.
(2003). Hardware architecture design for variable block size
motion estimation in MPEG-4 AVC/JVT/ITU-T H.264. In
Proceedings of IEEE international symposium on circuits and
systems (ISCAS’03), (pp. 796–799).

8. Lee, J.-H., & Lee, N.-S. (2004). Variable block size motion
estimation algorithm and its hardware architecture for H.264.
In Proceedings of IEEE international symposium on circuits
and systems (ISCAS’04) (pp. 740–743).

9. Yap, S. Y., & McCanny, J. V. (2004). A VLSI architecture for
variable block size video motion estimation. IEEE Transac-
tions on Circuits and Systems II (CASII), 51, 384–389.

10. Chen, T.-C., Fang, H.-C., Lian, C.-J., Tsai, C.-H., Huang,
Y.-W., Chen, T.-W., et al. (2006). Algorithm analysis and
architecture design for HDTV applications. IEEE Circuits
and Devices Magazine, 22, 22–31.

346 Y.-H. Chen et al.

11. Wiegand, T., Zhang, X., & Girod, B. (1999). Long-term mem-
ory motion-compensated prediction. IEEE Transactions on
Circuits and Systems for Video Technology (CSVT), 9, 70–84
(February).

12. Sullivan, G. J., & Wiegand, T. (1998). Rate-distortion op-
timization for video compression. IEEE Signal Processing
Magazine, 15(6), 74–90 (November).

13. Wiegand, T., Schwarz, H., Joch, A., Kossentini, F., &
Sullivan, G. J. (2003). Rate-constrained coder control and
comparison of video coding standards. IEEE Transactions on
Circuits and Systems for Video Technology (CSVT), 13(7),
688–703 (July).

14. Chao, W.-M., Chen, T.-C., Chang, Y.-C., Hsu, C.-W., & Chen,
L.-G. (2003). Computationally controllable integer, half, and
quarter-pel motion estimator for MPEG-4 advanced simple
profile. In Proceedings of 2003 international symposium on
circuits and systems (ISCAS’03) (pp. II788–II791).

15. Miyama, M., Miyakoshi, J., Kuroda, Y., Imamura, K.,
Hashimoto, H., & Yoshimoto, M. (2004). A sub-mW MPEG-
4 motion estimation processor core for mobile video applica-
tion. IEEE Journal of Solid-State Circuits, 39, 1562–1570.

16. Su, Y., & Sun, M.-T. (2004). Fast multiple reference frame
motion estimation for H.264. In Proceedings of IEEE inter-
national conference on multimedia and expo (ICME’04).

17. Joint Video Team Reference Software JM8.5 (2004). http://
bs.hhi.de/∼suehring/tml/download/ (September).

18. Chang, H.-C., Chen, L.-G., Hsu, M.-Y., & Chang, Y.-C.
(2000). Performance analysis and architecture evaluation
of MPEG-4 video codec system. In Proceedings of IEEE
international symposium on circuits and systems (ISCAS’00),
2, 449–452 (May).

19. Huang, Y.-W., Chen, T.-C., Tsai, C.-H., Chen, C.-Y., Chen,
T.-W., Chen, C.-S., et al. (2005). A 1.3TOPS H.264/AVC
Single-Chip Encoder for HDTV Applications. In Proceed-
ings of IEEE international solid-state circuits conference
(ISSCC’05) (pp. 128–130).

20. Chen, T.-C., Huang, Y.-W., & Chen, L.-G. (2004). Analysis
and design of macroblock pipelining for H.264/AVC VLSI
architecture. In Proceedings of 2004 international symposium
on circuits and systems (ISCAS’04) (pp. II273–II276).

21. Wang, T.-C., Huang, Y.-W. Fang, H.-C., & Chen, L.-G.
(2003). Parallel 4x4 2D transform and inverse transform
architecture for MPEG-4 AVC/H.264. In Proceedings of
IEEE international symposium on circuits and systems
(ISCAS’03) (pp. 800–803).

22. Chen, T.-C., Huang, Y.-W., & Chen, L.-G. (2004). Fully uti-
lized and reusable architecture for fractional motion esti-
mation of H.264/AVC. In Proceedings of IEEE ICASSP
(pp. V–9–V–12) (May).

23. Yang, C., Goto, S., & Ikenaga, T. (2006). High performance
VLSI architecture of fractional motion estimation in H.264
for HDTV. In Proc. IEEE ISCAS (pp. 2605–2608).

24. Chen, T.-C., Chen, Y.-H., Tsai, C.-Y., & Chen, L.-G. (2006).
Low power and power aware fractional motion estimation of
H.264/AVC for mobile applications. In Proceedings of IEEE
international symposium on circuits and systems (ISCAS’06).

Yi-Hau Chen was born in Taipei, Taiwan, R.O.C., in 1981. He
received the B.S.E.E degree from the Department of Electri-
cal Engineering, National Taiwan University, Taipei, Taiwan,
R.O.C., in 2003. Now he is working toward the Ph.D. degree
in the Graduate Institute of Electronics Engineering, National
Taiwan University. His major research interests include the
algorithm and related VLSI architectures of global/local motion
estimation, H.264/AVC, scalable video coding.

Tung-Chien Chen was born in Taipei, Taiwan, R.O.C., in
1979. He received the B.S. degree in electrical engineering
and the M.S. degree in electronic engineering from National
Taiwan University, Taipei, Taiwan, R.O.C., in 2002 and 2004,
respectively, where he is working toward the Ph.D. degree in
electronics engineering. His major research interests include
motion estimation, algorithm and architecture design of MPEG-
4 and H.264/AVC video coding, and low power video coding
architectures.

http://bs.hhi.de/~suehring/tml/download/
http://bs.hhi.de/~suehring/tml/download/

VLSI design of fractional motion estimation 347

Shao-Yi Chien received the B.S. and Ph.D. degrees from
the Department of Electrical Engineering, National Taiwan
University (NTU), Taipei, in 1999 and 2003, respectively. During
2003 to 2004, he was a research staff in Quanta Research Insti-
tute, Tao Yuan Shien, Taiwan. In 2004, he joined the Graduate
Institute of Electronics Engineering and Department of Elec-
trical Engineering, National Taiwan University, as an Assistant
Professor. His research interests include video segmentation al-
gorithm, intelligent video coding technology, image processing,
computer graphics, and associated VLSI architectures.

Yu-Wen Huang was born in Kaohsiung, Taiwan, in 1978. He
received the B.S. degree in electrical engineering and Ph. D.
degree in the Graduate Institute of Electronics Engineering from
National Taiwan University (NTU), Taipei, in 2000 and 2004,
respectively. He joined MediaTek, Inc., Hsinchu, Taiwan, in
2004, where he develops integrated circuits related to video cod-
ing systems. His research interests include video segmentation,
moving object detection and tracking, intelligent video coding
technology, motion estimation, face detection and recognition,
H.264/AVC video coding, and associated VLSI architectures.

Liang-Gee Chen was born in Yun-Lin, Taiwan, in 1956. He
received the BS, MS, and Ph.D degrees in Electrical Engineering
from National Cheng Kung University, in 1979, 1981, and 1986,
respectively.

He was an Instructor (1981-1986), and an Associate Professor
(1986-1988) in the the Department of Electrical Engineering,
National Cheng Kung University. In the military service during
1987 and 1988, he was an Associate Professor in the Institute
of Resource Management, Defense Management College. From
1988, he joined the Department of Electrical Engineering,
National Taiwan University. During 1993 to 1994 he was Visiting
Consultant of DSP Research Department, AT&T Bell Lab,
Murray Hill. At 1997, he was the visiting scholar of the De-
partment of Electrical Engineering, University, of Washington,
Seattle. Currently, he is Professor of National Taiwan University.
From 2004, he is also the Executive Vice President and the
General Director of Electronics Research and Service Organi-
zation (ERSO) in the Industrial Technology Research Institute
(ITRI). His current research interests are DSP architecture
design, video processor design, and video coding system.

Dr. Chen is a Fellow of IEEE. He is also a member of the
honor society Phi Tan Phi. He was the general chairman of the
7th VLSI Design CAD Symposium. He is also the general chair-
man of the 1999 IEEE Workshop on Signal Processing Systems:
Design and Implementation. He serves as Associate Editor of
IEEE Trans. on Circuits and Systems for Video Technology from
June 1996 until now and the Associate Editor of IEEE Trans. on
VLSI Systems from January 1999 until now. He was the Associate
Editor of the Journal of Circuits, Systems, and Signal Processing
from 1999 until now. He served as the Guest Editor of The
Journal of VLSI Signal Processing Systems for Signal, Image,
and Video Technology, November 2001. He is also the Associate
Editor of the IEEE Trans. on Circuits and Systems II: Analog
and Digital Signal Processing. From 2002, he is also the Associate
Editor of Proceedings of the IEEE.

Dr. Chen received the Best Paper Award from ROC Com-
puter Society in 1990 and 1994. From 1991 to 1999, he received
Long-Term (Acer) Paper Awards annually. In 1992, he received
the Best Paper Award of the 1992 Asia-Pacific Conference on
Circuits and Systems in VLSI design track. In 1993, he received
the Annual Paper Award of Chinese Engineer Society. In 1996,
he received the Out-standing Research Award from NSC, and
the Dragon Excellence Award for Acer. He is elected as the
IEEE Circuits and Systems Distinguished Lecturer from 2001-
2002.

	VLSI Architecture Design of Fractional Motion Estimation for H.264/AVC
	Abstract
	Introduction
	Overview of H.264/AVC FME
	Functionality Overview
	FME Procedure in Reference Software
	Profiling

	FME Procedure Decomposition
	Analysis of Encoding Loops
	44-Block Decomposition
	Efficient Scheduling for Vertical Data Reuse

	Hardware Architecture of Parallel FME Unit
	Implementation Results and Discussion of Reusability
	Implementation Results
	Reusability for Fast Algorithm
	Reusability for Different Specifications

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

