Skip to main content
Log in

Low Complexity Decoder Architecture for Low-Density Parity-Check Codes

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose a low complexity decoder architecture for low-density parity-check (LDPC) codes using a variable quantization scheme as well as an efficient highly-parallel decoding scheme. In the sum-product algorithm for decoding LDPC codes, the finite precision implementations have an important tradeoff between decoding performance and hardware complexity caused by two dominant area-consuming factors: one is the memory for updated messages storage and the other is the look-up table (LUT) for implementation of the nonlinear function Ψ(x). The proposed variable quantization schemes offer a large reduction in the hardware complexities for LUT and memory. Also, an efficient highly-parallel decoder architecture for quasi-cyclic (QC) LDPC codes can be implemented with the reduced hardware complexity by using the partially block overlapped decoding scheme and the minimized power consumption by reducing the total number of memory accesses for updated messages. For (3, 6) QC LDPC codes, our proposed schemes in implementing the highly-parallel decoder architecture offer a great reduction of implementation area by 33% for memory area and approximately by 28% for the check node unit and variable node unit computation units without significant performance degradation. Also, the memory accesses are reduced by 20%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Gallager, R. (1963). Low-density parity-check codes. Cambridge, MA: MIT.

    Google Scholar 

  2. MacKay, D. J. C. (1999). Good codes based on very sparse matrices. IEEE Transactions on Information Theory, 45(3), 399–431 (Mar).

    Article  MATH  MathSciNet  Google Scholar 

  3. Blanksby, A., & Howland, C. (2002). A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder. IEEE Journal of Solid-State Circuits, 37(3), 404–412 (Mar).

    Article  Google Scholar 

  4. Rovini, M., L’Insalata, N. E., Rossi, F., & Fanucci, L. (2005). VLSI design of a high-throughput multi-rate decoder for structured LDPC codes Rovini. In Proc. 8th euromicro conf. on digital system design (DSD 2005), pp. 202–209 (Aug).

  5. Lu, J., & Moura, J. M. F. (2006). Structured LDPC codes for high-density recording: Large girth and low error floor. IEEE Transactions on Magnetics, 42(2), 208–213 (Feb).

    Article  Google Scholar 

  6. Mansour, M., & Shanbhag, N. R. (2003). High-throughput LDPC decoders. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 11(6), 976–996 (Dec).

    Article  Google Scholar 

  7. Zhong, H., & Zhang, T. (2005). Block-LDPC: A practical LDPC coding system design approach. IEEE Transactions Circuits and Systems I, 52(4), 766–775 (Apr).

    Article  MathSciNet  Google Scholar 

  8. Tanner, R. M., Sridhara, D., Sridharan, A., Fuja, T. E., & Costello, D. J. (2004). LDPC block and convolutional codes based on circulant matrices. IEEE Transactions on Instrumentation and Measurement, 50, 2966–2984 (Dec).

    MathSciNet  Google Scholar 

  9. Fossorier, M. P. C. (2004). Quasi-cyclic low-density parity-check codes from circulant permutation matrices. IEEE Transactions on Information Theory, 50, 1788–1793 (Aug).

    Article  MathSciNet  Google Scholar 

  10. Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications, Draft EN 302 307 V1.1.1 ed., ETSI, June 2004.

  11. IEEE P802.11 Wireless LANs TGn Sync proposal: TGnSync proposal Technical Specification, May 2005, IEEE 11-04-0889-06-000n.

  12. IEEE P802.11 Wireless LANs WWiSE proposal: High throughout extension to the 802.11 Standard. Aug. 2004, IEEE 11-04-0886-00-000n.

  13. LDPC coding for OFDMA PHY. 802.16REVe Sponsor Ballot Recirculation comment, Jul. 2004, IEEE C802.16e-04/141r2.

  14. Zhang, T., Wang, Z., & Parhi, K. K. (2001). On finite precision implementation of low density parity check codes decoder. In: Proc. 2001 IEEE int. symp. on circuits and systems (ISCAS 2001), vol. 4, pp. 202–205 (May).

  15. Howard, S. L., Gaudet, V. C., & Schlegel, C. (2005). Soft-bit decoding of regular low-density parity-check codes. IEEE Transactions Circuits and Systems II, 52(10), 646–650 (Oct).

    Article  Google Scholar 

  16. Masera, G., Quaglio, F., & Vacca, F. (2005). Finite precision implementation of LDPC decoders. IEE Proceedings. Communications, 152(6), 1098–1102 (Dec).

    Article  Google Scholar 

  17. Sankar, H., & Narayanan, K. R. (2004). Memory-efficient sum-product decoding of LDPC codes. IEEE Transactions on Communications, 52(8), 1225–1230 (Aug).

    Article  Google Scholar 

  18. Chen, Y., & Parhi, K. K. (2004). Overlapped message passing for quasi-cyclic low density parity check codes. IEEE Transactions Circuits and Systems, 51, 1106–1113 (Jun).

    Article  MathSciNet  Google Scholar 

  19. Dai, Y., & Yan, Z. (2005). Optimal overlapped message passing decoding for quasi-cyclic low-density parity-check codes. In Proc. 2005 global telecomunications conference (Globecom 2005), vol. 4, pp. 2395–2399.

  20. Wang, Z., Chen, Y., & Parhi, K. K. (2004). Area efficient decoding of quasi-cyclic low density parity check codes. In Proc. of 2004 IEEE int. conf. on acous., speech, and sig. (ICASSP 2004), vol. 5, pp. 49–52 (May).

  21. Zhang, T., & Parhi, K. K. (2004). Joint (3,k)-regular LDPC code and decoder/encoder design. IEEE Transactions Signal Processing, 52, 1065–1079 (Apr).

    Article  MathSciNet  Google Scholar 

  22. Kim, S., & Parhi, K. K. (2004). Overlapped decoding for a class of quasi-cyclic codes. In Proc. 2004 IEEE workshop on signal processing systems (SiPS 2004), pp. 113–117 (Oct).

  23. Dai, Y., Yan, Z., & Chen, N. (2006). Parallel turbo-sum-product decoder architecture for quasi-cyclic LDPC codes. In Proc. of the 16th ACM Great Lakes symposium on VLSI (GLSVLSI), pp. 312–315 (Apr).

  24. Li, Y., Elassal, M., & Bayoumi, M. (2004). Power efficient architecture for (3,6)-regular low-density parity-check code decoder. In Proc. 2004 IEEE int. symp. on circuits and systems (ISCAS 2004), pp. IV81–IV84 (May).

  25. Zhong, H., Zhang, T., & Haratsch, E. F. (2006). High-rate quasi-cyclic LDPC codes for magnetic recording channel with low error floor. In Proc. 2006 IEEE int. symp. on circuits and systems (ISCAS 2006), pp. 3546–3549 (May).

  26. Cui, Z., & Wang, Z. (2006). Area-efficient parallel decoder architecture for high rate QC-LDPC codes. In Proc. 2006 IEEE int. symp. on circuits and systems (ISCAS 2006), pp. 5107–5110 (May).

  27. Oh, D., & Parhi, K. K. (2006). Low complexity implementations of sum-product algorithm for decoding low-density parity-check codes. In Proc. IEEE 2007 workshop on signal processing systems (SiPS 2006), pp. 283–288 (Oct).

  28. Oh, D., & Parhi, K. K. (2007). Efficient highly-parallel decoder architecture for quasi-cyclic low-density parity-check codes. In Proc. 2007 IEEE int. symp. on circuits and systems (ISCAS 2007), pp. 1855–1858 (May).

  29. Olcer, S. (2003). Decoder architecture for array-code-based LDPC codes. In Proc. 2003 IEEE global telecommunications conference (GLOBECOM 2003), vol. 4, pp. 2046–2050.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daesun Oh.

Additional information

This work was supported by the Army Research Office under grant number W911NF-04-1-0272.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, D., Parhi, K.K. Low Complexity Decoder Architecture for Low-Density Parity-Check Codes. J Sign Process Syst Sign Image Video Technol 56, 217–228 (2009). https://doi.org/10.1007/s11265-008-0231-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-008-0231-5

Keywords

Navigation