Abstract
This paper presents a programmable multi-mode finite impulse response (FIR) filter implemented as switched capacitor (SC) technique in CMOS 0.18 μm technology. Intended application of the described circuit is in analog base-band filtering in GSM/WCDMA systems. The proposed filter features a regular structure that allows for elimination of some parasitic capacitances, thus significantly improving the filtering accuracy. Due to its modularity that allows for dividing the circuit into two separate sections, the circuit can be easily reconfigured to work as either infinite impulse response (IIR) or as finite impulse (FIR) filter. One of the key components that allows for this multi-mode operation is the proposed programmable and ultra low power multiphase clock circuit. The 24-taps filter for the sampling frequency of 30 MHz dissipates power of 4.5 mW from a 1.8 V supply.












Similar content being viewed by others
References
K. Iniewski (Ed.) (2007). Wireless Technologies: Circuits, Systems and Devices, CRC Press. ISBN:978-0849379963
Mead, C. (1989). Analog VLSI and Neural Systems. Boston, MA, USA: Addison-Wesley.
Liu, S. C., Kramer, J., Indiveri, G., Delbrück, T., & Douglas, R. (2002). Analog VLSI: Circuits and Principles. Cambridge, MA: MIT.
Hosticka, B. (1985). Performance comparison of analog and digital circuits. Proceedings of the IEEE, 73, 25–29.
Vittoz, E. (1990). Future of analog in the VLSI environment. IEEE International Circuit and Systems Conference ISCAS, 2, 1372–1375.
Burlingame, E., & Spencer, R. (2000). An analog CMOS high-speed continuous-time FIR filter. Proceedings of the 26’th European Solid-State Circuits Conference ESSCIRC, pp. 288–291.
Długosz, R., & Iniewski, K. (2007). Flexible architecture of ultra-low-power current-mode interleaved successive approximation analog-to-digital converter for wireless sensor networks. paper accepted to Hindavi VLSI design.
Alzaher, H. A., Elwan, H. O., & Ismail, M. (2002). A CMOS highly linear channel-select filter for 3G multistandard integrated wireless receivers. IEEE Journal of Solid-State Circuits, 37(n.1), 27–37.
Hollman, T. (2001). A 2.7-V CMOS dual-mode baseband filter for PDC and WCDMA. IEEE Journal of Solid-State Circuits, 36(n.7), 1148–1153.
Elwan, H., Ravindran, A., & Ismail, M. (2002). CMOS low power baseband chain for a GSM/DECT multistandard receiver. IEE Proceedings Circuits, Devices and Systems, 149(n.56), 337–347.
Pavan, S., Tsividis, Y. P., & Nagaraj, K. (2000). Widely programmable high-frequency continuous-time filters in digital CMOS technology. IEEE Journal of Solid-State Circuits, 35(n.4), 503–511.
Chamla, D., et al. (2005). A Gm-C low-pass filter for zero-IF mobile applications with a very wide tuning range. Journal of Solid-State Circuits, 40(n.7), 1443–1450.
Bagheri, R. et al. (2006). An 800 MHz to 6 GHz software-defined radio receiver in 90 nm CMOS. International Solid-State Circuits Conference (ISSCC), pp. 480–481, February.
Dąbrowski, A., Długosz, R., & Pawłowski, P. (2006). Integrated CMOS GSM baseband channel selecting filters realized using switched capacitor finite impulse response technique. Microelectronics Reliability Journal, 46, 949–958.
Allen, P., Sanchez-Sinencio, E., & Reinhold, V. (1984). Switched Capacitor Circuits. New York: Wiley.
Dąbrowski, A. (1997). Multirate and multiphase switched-capacitor circuits. London: Chapman & Hall.
Franca, J., & Dias, V. (1991). Systematic method for the design of multiamplifier switched-capacitor FIR decimator circuits. IEEE Proceedings-G, 138, 307–314.
Tsividis, Y. (1982). Signal processors with transfer function coefficients determined by timing. IEEE Transactions on Circuits and Systems, CAS, 29(12), 807–817.
Seng-Pan, U., Martins, R. P., & Franca, J. E. (2004). A 2.5-V 57-MHz 15-tap SC bandpass interpolating filter with 320-MS/s output for DDFS system in 0.35 um CMOS. IEEE Journal of Solid-State Circuits, 39(1), 87–99.
Długosz, R., & Iniewski, K. (2008). Power and area efficient circular-memory switched-capacitor FIR baseband filter for WCDMA/GSM. International Symposium on Circuits and Systems (ISCAS), Seattle, USA, May.
Bagheri, R., Mirzaei, A., Chehrazi, S., Heidari, M., Lee, M., Mikhemar, M., Tang, W. et al. (2006). An 800 MHz to 5 GHz software-defined radio receiver in 90 nm CMOS. International Solid State Circuit Conference (ISSCC).
Wang, X., & Spencer, R. R. (1998). A low-power 170-MHz discrete-time analog FIR filter. IEEE Journal of Solid-State Circuits, 33(3), 417–426.
Lee, Y.-S., & Martin, K. W. (1988). A switched-capacitor realization of multiple FIR filters on a single chip. IEEE Journal of Solid-State Circuits, 23(2), 536–542.
Xu, D., Song, Y., & Uehara, G. T. (1996). A 200 MHz 9-Tap analog equalizer for magnetic disk read channels in 0.6 um CMOS. International Solid State Circuit Conference (ISSCC)
KiriakiViswanathan, S. T. L., Feygin, G., Staszewski, B., Pierson, R., Krenik, B., et al. (1997). A 160-MHz analog equalizer for magnetic disk read channels. IEEE Journal of Solid-State Circuits, 32(11), 1839–1850.
Toumazou, C., Moshytz, G., & Gilbert, B. (2002). Trade-Offs in Analog Circuit Design. New York: Kluwer.
Cheung, Y. L., & Buchwald, A. (1997). A sampled-data switched-current analog 16-tap FIR filter with digitally programmable coefficients in 0.8 mm CMOS. IEEE International Solid-State Circuits Conference, 40, 54–55 and 129.
Farag, F. A., Galup-Montoro, C., & Schneider, M. C. (2000). Digitally programmable switched-current FIR filter for low-voltage applications. IEEE Journal of Solid-State Circuits, 35(4), 637–641.
Długosz, R. (2005). New architecture of programmable SC FIR filter with circular memory. International Conference Mixed Design of Integrated Circuits and Systems (MIXDES), Kraków, Poland.
Fischer, G. (1990). Analog FIR filters by switched-capacitor techniques. IEEE Transactions on Circuits and Systems, CAS, 37(6), 808–814.
Vaidyanathan, P. P. (1993). Multirate systems and filter banks. Englewood Cliffs, NJ: Pretence Hall.
Repo, H., & Rahkonen, T. (2003). Programmable switched capacitor 4-tap FIR filter. Proceedings of the 29 th European Solid-State Circuits Conference (ESSCIRC), pp. 445–448
Guilar, N. J., Lau P.-K., Hurst, P. J., & Lewis, S. H. (2005). A 200 MS/s passive switched-capacitor FIR equalizer using a time-interleaved topology. Proceedings of the IEEE Custom Integrated Circuits Conference (CICC), pp. 633–636
Carley, L. R., Bracken, K. C., Mittal, R., & Park, J. (1995). A low-power analog sampled-data VLSI architecture for equalization and FDTS/DF detection. IEEE Transactions on Magnetics, 31(2), 1202–1207.
Długosz, R., & Iniewski, K. (2006). 0.35 mm 22 mW, “Multiphase Programmable Clock Generator for Circular Memory SC FIR Filter For Wireless Sensor Applications”, International Signal Processing Systems Conference (SIPS), Banff, Canada.
Author information
Authors and Affiliations
Corresponding author
Additional information
Fellow of the Marie Curie Outgoing International Fellowship
Rights and permissions
About this article
Cite this article
Długosz, R., Iniewski, K. Programmable Switched Capacitor Finite Impulse Response Filter with Circular Memory Implemented in CMOS 0.18 μm Technology. J Sign Process Syst Sign Image Video Technol 56, 295–306 (2009). https://doi.org/10.1007/s11265-008-0233-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11265-008-0233-3