Skip to main content
Log in

Analysis of Convergence of a Frequency-Domain LMS Adaptive Filter Implemented as a Multi-Stage Adaptive Filter

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

We present an analysis of the convergence of the frequency-domain LMS adaptive filter when the DFT is computed using the LMS steepest descent algorithm. In this case, the frequency-domain adaptive filter is implemented with a cascade of two sections, each updated using the LMS algorithm. The structure requires less computations compared to using the FFT and is modular suitable for VLSI implementations. Since the structure contains two adaptive algorithms updating in parallel, an analysis of the overall system convergence needs to consider the effect of the two adaptive algorithms on each other, in addition to their individual convergence. Analysis was based on the expected mean-square coefficient error for each of the two LMS adaptive algorithms, with some simplifying approximations for the second algorithm, to describe the convergence behavior of the overall system. Simulations were used to verify the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Haykin, S. (1991). Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice Hall.

    MATH  Google Scholar 

  2. Farhang-Boroujeny, B. (1999). Adaptive Filters: Theory and Applications. NY, USA: Wiley.

    Google Scholar 

  3. Widrow, B., Baudrenghien, P., Vetterli, M., & Titchener, P. F. (1987). Fundamental relations between the LMS algorithm and the DFT. IEEE Transactions on Circuits and Systems, 34, 814–820.

    Article  Google Scholar 

  4. Narayan, S., Peterson, A. M., & Narasimha, M. J. (1983). Transform-domain LMS adaptive filter. IEEE Transactions on Acoustics, Speech and Signal Processing, 31, 609–615.

    Article  Google Scholar 

  5. Ogunfunmi, A. O., & Peterson, A. M. (1992). On the implementation of the frequency-domain LMS adaptive filter. IEEE Transactions on Circuits and Systems, 39(5), 318–322.

    Article  Google Scholar 

  6. Ogunfunmi, T., & Au, M. (1995). Two-dimensional discrete orthogonal transforms by means of means of two-dimensional LMS adaptive filters. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Science, vol. E-78A, No. 9.

  7. Ho, K. C. (2000). A study of two adaptive filters in tandem. IEEE Transactions on Signal Processing, 48, 1626–1636.

    Article  Google Scholar 

  8. Kozat, S. S., & Singer, A. C. (2000). Multi-stage adaptive signal processing algorithms. Proceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop.

  9. Arenas-Garcia, J., et al. (2006). Plant identification via adaptive combination of transversal filters. Signal Processing, 86, 2430–2438.

    Article  Google Scholar 

  10. Ogunfunmi, T., & Paul, T. (2006). On the convergence of the frequency-domain LMS adaptive filter using LMS-DFT. Proceedings of the IEEE Signal Processing Systems (SIPS) Workshop.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tokunbo Ogunfunmi.

Appendix

Appendix

1.1 Detailed convergence analysis

These are the Error and Coefficient update Equations

For (Time-Domain) LMS-DFT

Input: X (k)

Error: e 1(k) = c(k) − H H(k)X(k)

Update:

$$H\left( {k + 1} \right) = H\left( k \right) + 2\mu _H X\left( k \right)e_1^* \left( k \right)$$

For (Frequency Domain) LMS

Input: Z(k) = H(k)⊗X(k)

Error: e 2(k) = d(k) − W H(k)Z(k)

Update: W(k + 1) = W(k) + 2μ w Z(k)e *(k)

For (Time-Domain) LMS-DFT(1st LMS Algorithm)

Error: \(e_1 \left( k \right) = \underbrace {\left( {H_0^H X\left( k \right) + n_1 \left( k \right)} \right)}_{c\left( k \right)} - H^H \left( k \right)X\left( k \right)\) where H 0 (optimal solution) is

$$\matrix {{\text{stationary}}} { = \left( {H_0^H - H^H } \right)X\left( k \right) + n_1 \left( k \right)} {} \\ {} { = - ^ \wedge H^H X\left( k \right) + n_1 \left( k \right)} {{\text{where }}^ \wedge H = \left( {H - H_0 } \right)\quad {\text{is}}\;{\text{a}}\;{\text{weight}}\;{\text{error}}\;{\text{vector}}} \ \matrix {} \\ {\quad \quad } \ $$
$$\matrix {{\text{Update:}}} \hfill {H\left( {k + 1} \right) = H\left( k \right) + 2\mu _H X\left( k \right)e_1^* \left( k \right)} \hfill \\ {} \hfill {\left( {H\left( {k + 1} \right) - H_0 } \right) = \left( {H\left( k \right) - H_0 } \right) + 2\mu _H X\left( k \right)\underbrace {\left( { - ^ \wedge H^H \left( k \right)X\left( k \right) + n_1 \left( k \right)} \right)}_{e_1 \left( k \right)}^* } \hfill \\ {} \hfill {^ \wedge H\left( {k + 1} \right) = ^ \wedge H\left( k \right) + 2\mu _H X\left( k \right)\left( { - ^ \wedge H^T \left( k \right)X^* \left( k \right) + n_1^* \left( k \right)} \right)} \hfill \\ {} \hfill {^ \wedge H\left( {k + 1} \right) = ^ \wedge H\left( k \right) + 2\mu _H X\left( k \right)\left( { - X^H \left( k \right)^ \wedge H\left( k \right) + n_1^* \left( k \right)} \right)} \hfill \\ {} \hfill {^ \wedge H\left( {k + 1} \right) = ^ \wedge H\left( k \right) - 2\mu _H X\left( k \right)X^H \left( k \right)^ \wedge H\left( k \right) + 2\mu _H X\left( k \right)n_1^* \left( k \right)} \hfill \\ {} \hfill {^ \wedge H\left( {k + 1} \right) = \left( {I - 2\mu _H X\left( k \right)X^H \left( k \right)} \right)^ \wedge H\left( k \right) + 2\mu _H X\left( k \right)n_1^* \left( k \right)} \hfill \ $$

Let \({}^ \wedge{H}^1 \left( k \right) = Q^H {}^ \wedge{H}\left( k \right)\), where \({}^ \wedge{H}H^1 \left( k \right)\) is in rotated co-ordinates

$$\matrix {{\text{Then}}} \hfill {Q^H \left[ {^ \wedge H\left( {k + 1} \right)} \right] = Q^H \left[ {\left( {I - 2\mu _H X\left( k \right)X^H \left( k \right)} \right)^ \wedge H\left( k \right) + 2\mu _H X\left( k \right)n_1^* \left( k \right)} \right]} \hfill \\ {} \hfill {^ \wedge H^1 \left( {k + 1} \right) = \left[ {\left( {Q^H - 2\mu _H Q^H X\left( k \right)X^H \left( k \right)} \right)QQ^{H} {^ \wedge {H}}\left( k \right) + 2\mu _H Q^H X\left( k \right)n_1^* \left( k \right)} \right]} \hfill \\ {} \hfill {^ \wedge H^1 \left( {k + 1} \right) = \left[ {\left( {I - 2\mu _H X^1 \left( k \right)X^{1H} \left( k \right)} \right)^ \wedge H^1 \left( k \right) + 2\mu _H X^1 \left( k \right)n_1^* \left( k \right)} \right]} \hfill \ $$

For (Frequency Domain) LMS (2 nd LMS Algorithm)

Error:\(\matrix {e_{2} \left( k \right)}{ = \underbrace {\left( {W_{0}^H Z\left( k \right) + n_{2} \left( k \right)} \right)}_{d\left( k \right)} - W^H \left( k \right)Z\left( k \right)} \\ {}{ = - {}^ \wedge{W}^H Z\left( k \right) + n_{2} \left( k \right)} \ \)where W 0 (optimal solution) is stationary

$$\matrix {{\text{Update:}}} \hfill {W(k + 1)} \hfill { = W(k) + 2\mu _w Z(k)e_2^* (k)} \hfill \\ {} \hfill {^ \wedge W^1 (k + 1)} \hfill { = \left[ {\left( {I - 2\mu _w Z^1 (k)Z^{1H} (k)} \right)^ \wedge W^1 (k) + 2\mu _w Z^1 (k)n_2^* (k)} \right]} \hfill \ $$

where Z(k) = H(k) ⊗ X(k)

Recall that \({}^nV\prime _{11} \left( n \right) = E_{nx} \left[ {{}^nH\prime ^H \left( n \right) \otimes {}^nH\prime \left( n \right)} \right]\) Also recall that \({}^nC_{11}^\prime \left( k \right)\), \({}^nC_{22}^\prime \left( k \right)\) are the equivalent MSE matrices for \({}^ \wedge{V}_{11} \left( k \right)\), \({}^ \wedge{V}_{22} \left( k \right)\). They are just the diagonals of \({}^nC_{11}^\prime \left( k \right)\), \({}^nC_{22}^\prime \left( k \right)\).

$$\begin{array}{*{20}l} {{{\text{To}}\;{\text{find:}}} \hfill} & {{^{ \wedge } V_{{11}} {\left( k \right)} = E{\left[ {^{ \wedge } H\prime ^{H} {\left( k \right)} \otimes ^{ \wedge } H\prime {\left( k \right)}} \right]}} \hfill} \\ {{} \hfill} & {{^{ \wedge } H\prime {\left( {k + 1} \right)} = {\left( {I - 2\mu _{H} X\prime {\left( k \right)}X\prime ^{{\rm H}} {\left( k \right)}} \right)}^{ \wedge } H\prime {\left( k \right)} + 2\mu _{H} X\prime {\left( k \right)}n^{*}_{1} {\left( k \right)}} \hfill} \\ {{} \hfill} & {{{}^{n}C^{\prime }_{{11}} {\left( {k + 1} \right)} = E_{{nx}} {\left[ {^{ \wedge } H^{1} {\left( {k + 1} \right)}^{ \wedge } H^{{1H}} {\left( {k + 1} \right)}} \right]}} \hfill} \\ \end{array}$$

Substitute \({}^ \wedge{H}^1 \left( {k + 1} \right) = \left[ {\left( {I - 2\mu _H X^1 \left( k \right)X^{1H} \left( k \right)} \right){}^ \wedge{H}^1 \left( k \right) + 2\mu _H X^1 \left( k \right)n_1^* \left( k \right)} \right]\) to get

$$\begin{array}{*{20}c} {{}^{n}C^{\prime }_{{11}} {\left( {k + 1} \right)}}{ = E_{{nx}} {\left[ {{\left[ {{\left( {I - 2\mu _{H} X^{1} {\left( k \right)}X^{{1H}} {\left( k \right)}} \right)}{}^{ \wedge }H^{1} {\left( k \right)} + 2\mu _{H} X^{1} {\left( k \right)}n^{*}_{1} {\left( k \right)}} \right]}{\left[ {{\left( {I - 2\mu _{H} X^{1} {\left( k \right)}X^{{1H}} {\left( k \right)}} \right)}{}^{ \wedge }H^{1} {\left( k \right)} + 2\mu _{H} X^{1} {\left( k \right)}n^{*}_{1} {\left( k \right)}} \right]}} \right]}} \\ {}{ = E_{{nx}} {\left[ {{\left[ {{\left( {I - 2\mu _{H} X^{1} {\left( k \right)}X^{{1H}} {\left( k \right)}} \right)}{}^{ \wedge }H^{1} {\left( k \right)} + 2\mu _{H} X^{1} {\left( k \right)}n^{*}_{1} {\left( k \right)}} \right]}{\left[ {{}^{ \wedge }H^{{1H}} {\left( k \right)}{\left( {I - 2\mu _{H} X^{1} {\left( k \right)}X^{{1H}} {\left( k \right)}} \right)}^{{1H}} + 2\mu _{H} X^{{1H}} {\left( k \right)}n^{*}_{1} {\left( k \right)}} \right]}} \right]}} \\ {}{ = E_{{nx}} {\left[ {{\left[ {{\left( {I - 2\mu _{H} X^{1} {\left( k \right)}X^{{1H}} {\left( k \right)}} \right)}{}^{ \wedge }H^{1} {\left( k \right)}{}^{ \wedge }H^{{1H}} {\left( k \right)}{\left( {I - 2\mu _{H} X^{1} {\left( k \right)}X^{{1H}} {\left( k \right)}} \right)}} \right]}} \right]}} \\ {}{{\left[ { + 2\mu _{H} {\left( {I - 2\mu _{H} X\prime {\left( k \right)}X^{{\prime H}} {\left( k \right)}} \right)}{}^{ \wedge }H\prime {\left( k \right)}{}^{ \wedge }X^{{1H}} {\left( k \right)}n_{1} {\left( k \right)} + 2\mu _{H} n^{*}_{1} {\left( k \right)}X^{1} {\left( k \right)}{}^{ \wedge }H^{{1H}} {\left( k \right)}{\left( {I - 2\mu _{H} X\prime {\left( k \right)}X^{{\prime H}} {\left( k \right)}} \right)}} \right]}{\left[ { + 4\mu ^{2}_{H} n^{*}_{1} {\left( k \right)}n_{1} {\left( k \right)}X^{1} {\left( k \right)}X^{{1H}} {\left( k \right)}} \right]}} \\ \end{array}$$

Since n1(k) is independent of X(k),H(k) and E[n 1(k)] = ϕ

$$\begin{array}{*{20}c}{{}^nC_{11}^\prime \left( {k + 1} \right)}{ = E_x \left[ {\left( {I - 2\mu _H X^\prime \left( k \right)X^\prime{H} \left( k \right)} \right)^\wedge C_{11}^\prime \left( k \right)\left( {I - 2\mu _H X^\prime \left( k \right)X^\prime{H} \left( k \right)} \right)} \right] + 4\mu _H^2 \underbrace {E\left[ {n_1^* (k)n_1 (k)} \right]}_{\sigma _n^2 }\underbrace {E_x \left[ {X^\prime (k)X^\prime{H} (k)} \right]}_\Delta } \\{}{ = E\left[ {^\wedge C_{11}^\prime \left( k \right)} \right] - 2\mu _H E_x \left[ {^\wedge C_{11}^\prime \left( k \right)X^\prime \left( k \right)X^\prime{H} \left( k \right)} \right] - 2\mu _H E_x \left[ {X^\prime \left( k \right)X^\prime{H} \left( k \right)^\wedge C_H^\prime \left( k \right)} \right] + 4\mu _H^2 E_x \left[ {X^\prime \left( k \right)X^\prime{H} \left( k \right)^\wedge C_{11}^\prime \left( k \right)X^\prime \left( k \right)X^\prime{H} \left( k \right)} \right] + 4\mu _H^2 \sigma _{n1}^2 \Delta } \\{}{ = ^\wedge C_{11}^\prime \left( k \right) - 2\mu _H ^\wedge C_{11}^\prime \left( k \right)\Delta - 2\mu _H \Delta ^\wedge C_{11}^\prime \left( k \right) + 4\mu _H^2 E_x \left[ {X^\prime \left( k \right)X^\prime{H} \left( k \right)^\wedge C_{11}^\prime \left( k \right)X^\prime \left( k \right)X^\prime{H} \left( k \right)} \right] + 4\mu _H^2 \sigma _{n1}^2 \Delta } \\\end{array} $$
$$\matrix {{\text{Since}}} {E_x \left[ {X\prime \left( k \right)X\prime ^H \left( k \right)SX\prime \left( k \right)X\prime ^H \left( k \right)} \right] = \Delta S\Delta + tr\left( {S\Delta } \right)\Delta } \ $$
$$^\wedge C_{11}^\prime \left( {k + 1} \right) = ^\wedge C_{11}^\prime \left( k \right) - 2\mu _H ^\wedge C_{11}^\prime \left( k \right)\Delta - 2\mu _H ^\wedge C_{11}^\prime \left( k \right)\Delta + 4\mu _H^2 \Delta ^\wedge C_{11}^\prime \left( k \right)\Delta + 4\mu _H^2 tr\left( {C_{11}^\prime \left( k \right)\Delta } \right)\Delta + 4\mu _H^2 \sigma _{n1}^2 \Delta $$

So diagonal elements are:

$$^{\hat{}} C^{'}_{{11,ii}} {\left( {k + 1} \right)} = {\left( {1 - 4\mu _{H} \lambda _{i} + 4\mu ^{2}_{H} \lambda ^{2}_{i} } \right)}^{\hat{}} C^{'}_{{11,ii}} {\left( k \right)} + 4\mu ^{2}_{H} \lambda _{i} {\sum\limits_{p = 1}^N {\lambda _{p} ^{\hat{}} C^{'}_{{11,pp}} {\left( k \right)}} } + 4\mu ^{2}_{H} \sigma ^{2}_{{n1}} \lambda _{i}$$

Therefore, we can define

$$^\wedge V_{11}^\prime \left( {k + 1} \right) = \phi ^\wedge V_{11}^\prime \left( k \right) + 4\mu _H^2 \sigma _{n1}^2 \lambda $$
$$\matrix {{\text{where}}} {\phi = I - 4\mu _H \Delta + 4\mu _H^2 \Delta ^2 + 4\mu _H^2 \lambda \lambda ^T } \ $$

Now to find

$$^ \wedge V_{22}^\prime \left( k \right)$$

Also recall that \({}^nV\prime_{22} \left( n \right) = E_{nx} [{}^nW\prime^H \left( n \right) \otimes {}^nW\prime\left( n \right)]\)

$$\matrix {{\text{To}}\;{\text{find}}} \hfill {{}^ \wedge V_{22}^\prime \left( k \right)} \hfill { = E_{nx} \left[ {{}^ \wedge W^1 \left( k \right) \otimes {}^ \wedge W^{1H} \left( k \right)} \right]} \hfill \\ {} \hfill {{}^ \wedge W^1 \left( {k + 1} \right)} \hfill { = \left[ {\left( {I - 2\mu _H Z^1 \left( k \right)Z^{1H} \left( k \right)} \right){}^ \wedge W^1 \left( k \right) + 2\mu _H Z^1 \left( k \right)Z^{1H} \left( k \right)n_2^* \left( k \right)} \right]} \hfill \\ {} \hfill {{}^nC_{22}^\prime \left( {k + 1} \right)} \hfill { = E_{nx} \left[ {{}^ \wedge W^1 \left( {k + 1} \right){}^ \wedge W^{1H} \left( {k + 1} \right)} \right]} \hfill \ $$
$$\begin{array}{*{20}c} {{}^nC_{22}^\prime \left( {k + 1} \right)}{ = E_{nx} \left[ {\left[ {\left( {I - 2\mu _{W} Z^1 \left( k \right)Z^{1H} \left( k \right)} \right){}^ \wedge W^1 \left( k \right) + 2\mu _{W} Z^1 \left( k \right)n_{2}^* \left( k \right)} \right]\left[ {\left( {I - 2\mu _{W} Z^1 \left( k \right)Z^{1H} \left( k \right)} \right){}^ \wedge W^1 \left( k \right) + 2\mu _W Z^1 \left( k \right)n_{2}^* \left( k \right)} \right]^H } \right]} \\ {}{ = E_{nx} \left[ {\left[ {\left( {I - 2\mu _{W} Z^1 \left( k \right)Z^{1H} \left( k \right)} \right){}^ \wedge W^1 \left( k \right) + 2\mu _{W} Z^1 \left( k \right)n_{2}^* \left( k \right)} \right]\left[ {{}^ \wedge W^{1H} \left( k \right)\left( {I - 2\mu _{W} Z^1 \left( k \right)Z^{1H} \left( k \right)} \right)^{1H} + 2\mu _{W} Z^{1H} \left( k \right)n_{2}^* \left( k \right)} \right]} \right]} \\ {}{ = E_{nx} \left[ {\left[ {\left( {I - 2\mu _{W} Z^1 \left( k \right)Z^{1H} \left( k \right)} \right){}^ \wedge W^1 \left( k \right){}^ \wedge W^{1H} \left( k \right)\left( {I - 2\mu _{W} Z^1 \left( k \right)Z^{1H} \left( k \right)} \right)} \right]} \right]\left[ { + 2\mu _{W} \left( {I - 2\mu _{W} Z^\prime \left( k \right)Z^{\prime H} \left( k \right)} \right){}^ \wedge W^\prime \left( k \right){}^ \wedge Z^{1H} \left( k \right)n_{2} \left( k \right) + 2\mu _{W} n_2^* \left( k \right)Z^1 \left( k \right)^\wedge W^{1H} \left( k \right)\left( {I - 2\mu _W Z^\prime \left( k \right)Z^{\prime H} \left( k \right)} \right)} \right]\left[ { + 4\mu _W^2 n_2^* \left( k \right)n_2 \left( k \right)Z^1 \left( k \right)Z^{1H} \left( k \right)} \right]} \\\end{array} $$

Since n 2(k) is independent of W(k), Z(k) and \(E\left[ {n_2 (k)} \right] = \phi \)

$$ = E_x \left[ {\left( {I - 2\mu _W Z^\prime \left( k \right)Z^{\prime H} \left( k \right)} \right)^ \wedge W\prime \left( k \right)W^{\prime H} \left( k \right)\left( {I - 2\mu _W Z^\prime \left( k \right)Z^{'H} \left( k \right)} \right)} \right] + 4\mu _W^2 \sigma _{n2}^2 E_x \left[ {Z^\prime \left( k \right)Z^{\prime H} \left( k \right)} \right]$$
$${\text{Let}}\;\;A = E_x \left[ {Z^\prime \left( k \right)Z^{\prime H} \left( k \right)} \right]$$
$${\text{Let}}\;B = E_x \left[ {\left( {I - 2\mu _W Z^\prime \left( k \right)Z^{\prime H} \left( k \right)} \right)^ \wedge W\prime \left( k \right)W^{\prime H} \left( k \right)\left( {I - 2\mu _W Z^\prime \left( k \right)Z^{\prime {\rm H}} \left( k \right)} \right)} \right]$$
$$\matrix {A = E_x \left[ {Z^\prime \left( k \right)Z^\prime{H} \left( k \right)} \right]}{ = E_x \left[ {\left[ {Q^H \left( {H(k) \otimes X(k)} \right)} \right]\left[ {Q^H \left( {H(k) \otimes X(k)} \right)} \right]^H } \right]} \\ {}{ = E_x \left[ {\left[ {Q^H \left( {X(k) \otimes H(k)} \right)} \right]\left[ {\left( {H^H (k) \otimes X^H (k)} \right)Q} \right]} \right]} \\ {}{ = E_x \left[ {\left( {X^\prime (k) \otimes H(k)} \right)\left( {H^H (k) \otimes X^\prime{H} (k)} \right)} \right]} \\ {}{ = E_x \left[ {\left( {H(k) \otimes X^\prime (k)} \right)\left( {X^\prime{H} (k) \otimes H^H (k)} \right)} \right]} \ $$

Convert H(k), H H(k) to diagonal matrices

$$\begin{aligned} & = E_{x} {\left[ {{\left( {H_{d} {\left( k \right)}X\prime {\left( k \right)}} \right)}{\left( {X\prime ^{H} {\left( k \right)}H^{H}_{d} {\left( k \right)}} \right)}} \right]} \\ & = E_{x} {\left[ {{\left( {H_{d} {\left( k \right)}X\prime {\left( k \right)}X\prime ^{H} {\left( k \right)}H^{H}_{d} {\left( k \right)}} \right)}} \right]} \\ & = E{\left[ {H_{d} {\left( k \right)}} \right]}E_{x} {\left[ {X\prime {\left( k \right)}X\prime ^{H} {\left( k \right)}} \right]}E{\left[ {H^{H}_{d} {\left( k \right)}} \right]} \\ & = E{\left[ {H_{d} {\left( k \right)}} \right]}\Delta E{\left[ {H^{H}_{d} {\left( k \right)}} \right]} \\ & = B_{1} {\left( k \right)}\Delta B_{1} {\left( k \right)}\quad {\text{where}}\quad B_{1} {\left( k \right)} = E{\left[ {H_{d} {\left( k \right)}} \right]} \\ \end{aligned} $$
$$\begin{array}{*{20}c} {{\text{Recall}}\;{\text{that}}}{B = E_x \left[ {\left( {I - 2\mu _W Z\prime \left( k \right)Z\prime ^H \left( k \right)} \right)^ \wedge W\prime \left( k \right)W\prime ^H \left( k \right)\left( {I - 2\mu _W Z\prime \left( k \right)Z\prime ^H \left( k \right)} \right)} \right]} \\ {}{ = E\left[ {{}^ \wedge W\prime \left( k \right){}^ \wedge W\prime ^H \left( k \right)} \right] - 2\mu _W E_x \left[ {{}^ \wedge W\prime \left( k \right){}^ \wedge W\prime ^H \left( k \right)Z\prime \left( k \right)Z\prime ^H \left( k \right)} \right] - 2\mu _W E_x \left[ {Z\prime \left( k \right)Z\prime ^H \left( k \right){}^ \wedge W\prime \left( k \right){}^ \wedge W\prime ^H \left( k \right)} \right] + 4\mu _W^2 E_x \left[ {Z\prime \left( k \right)Z\prime ^H \left( k \right){}^ \wedge W\prime \left( k \right){}^ \wedge W\prime ^H \left( k \right)Z\prime \left( k \right)Z\prime ^H \left( k \right)} \right]} \\ {}{ = {}^ \wedge C_{22}^\prime \left( k \right) - 2\mu _W {}^ \wedge C_{22}^\prime \left( k \right)E\left[ {Z\prime \left( k \right)Z\prime ^H \left( k \right)} \right] - 2\mu _W {}^ \wedge C_{22}^\prime \left( k \right)E\left[ {Z\prime \left( k \right)Z\prime ^H \left( k \right)} \right] + 4\mu _W^2 E\left[ {Z\prime \left( k \right)Z\prime ^H \left( k \right){}^ \wedge W\prime \left( k \right){}^ \wedge W\prime ^H \left( k \right)Z\prime \left( k \right)Z\prime ^H \left( k \right)} \right]} \\ {}{ = {}^ \wedge C_{22}^\prime \left( k \right) - 2\mu _W {}^ \wedge C_{22}^\prime \left( k \right)B_1 \left( k \right)\Delta B_1^H \left( k \right) - 2\mu _W {}^ \wedge C_{22}^\prime \left( k \right)B_1 \left( k \right)\Delta B_1^H \left( k \right) + 4\mu _W^2 E_x \left[ {Z\prime \left( k \right)Z\prime ^H \left( k \right){}^ \wedge W\prime \left( k \right){}^ \wedge W\prime ^H \left( k \right)Z\prime \left( k \right)Z\prime ^H \left( k \right)} \right]} \\\end{array} $$
$${\text{Let}}\;C = E_x \left[ {Z^\prime \left( k \right)Z^{\prime H} \left( k \right){}^ \wedge W^\prime \left( k \right){}^ \wedge W^{\prime H} \left( k \right)Z^\prime \left( k \right)Z^{\prime H} \left( k \right)} \right]$$
$$\begin{array}{*{20}c} {E_{x} {\left[ {Z^{\prime } {\left( k \right)}Z^{{\prime H}} {\left( k \right)}{}^{ \wedge }W^{\prime } {\left( k \right)}{}^{ \wedge }W^{{\prime H}} {\left( k \right)}Z^{\prime } {\left( k \right)}Z^{{\prime H}} {\left( k \right)}} \right]}}{ = E{\left[ {H_{d} {\left( k \right)}X^{\prime } {\left( k \right)}X^{{\prime H}} {\left( k \right)}H^{H}_{d} {\left( k \right)}{}^{ \wedge }W^{\prime } {\left( k \right)}{}^{ \wedge }W^{{\prime H}} {\left( k \right)}H_{d} {\left( k \right)}X^{\prime } {\left( k \right)}X^{{\prime H}} {\left( k \right)}H^{H}_{d} {\left( k \right)}} \right]}} \\ {}{ = E{\left[ {H_{d} {\left( k \right)}} \right]}E{\left[ {X^{\prime } {\left( k \right)}X^{{\prime H}} {\left( k \right)}H^{H}_{d} {\left( k \right)}{}^{ \wedge }W^{\prime } {\left( k \right)}{}^{ \wedge }W^{{\prime H}} {\left( k \right)}X^{\prime } {\left( k \right)}X^{{\prime H}} {\left( k \right)}H^{H}_{d} {\left( k \right)}} \right]}E{\left[ {H^{H}_{d} {\left( k \right)}} \right]}} \\ \end{array} $$
$$\matrix {{\text{Since}}} \hfill {E_x \left[ {X\prime \left( k \right)X\prime ^H \left( k \right)SX\prime \left( k \right)X\prime ^H \left( k \right)} \right]} \hfill { = \Delta S\Delta + tr\left( {S\Delta } \right)\Delta } \hfill \\ {} \hfill {} \hfill { = B_1 \left( k \right)\Delta B_1^H \left( k \right)^ \wedge C_{22}^\prime \left( k \right)B_1 \left( k \right)\Delta B_1^H \left( k \right) + B_1 \left( k \right)tr\left( {B_1^H \left( k \right)^ \wedge C_{22}^\prime \left( k \right)B_1 \left( k \right)\Delta } \right)\Delta B_1^H \left( k \right)} \hfill \ $$

Recombining A, B and C

$$\begin{array}{*{20}c}{^\wedge C_{22}^\prime \left( {k + 1} \right)}{ = ^\wedge C_{22}^\prime \left( k \right) - 2\mu _W ^\wedge C_{22}^\prime \left( k \right)B_1 \left( k \right)\Delta B_1^H \left( k \right) - 2\mu _W B_1 \left( k \right)\Delta B_1^H \left( k \right)^\wedge C_{22}^\prime \left( k \right)} \\{}{ + 4\mu _W^2 B_1 \left( k \right)\Delta B_1^H \left( k \right)^\wedge C_{22}^\prime \left( k \right)B_1 \left( k \right)\Delta B_1^H \left( k \right) + 4\mu _W^2 B_1 \left( k \right)tr\left( {B_1^H \left( k \right)C_{22}^\prime \left( k \right)B_1 \left( k \right)\Delta } \right)\Delta B_1^H \left( k \right)} \\{}{ + 4\mu _W^2 \sigma _{n2}^2 B_1 \left( k \right)\Delta B_1^H \left( k \right)} \\\end{array} $$

So diagonal elements are:

$$^\wedge C_{22,ii}^\prime \left( {k + 1} \right) = \left( {1 - 4\mu _w b_{1,i} b_{1,i}^* \lambda _i + 4\mu _w^2 b_{1,i}^2 b_{1,i}^{*2} \lambda _i^2 } \right) + 4\mu _w^2 b_{1,i} b_{1,i}^* \lambda _i \sum\limits_{p = 1}^N {b_{1,i} b_{1,i}^* \lambda _i ^\wedge C_{22,pp}^\prime \left( k \right)} + 4\mu _w^2 \sigma _{n2}^2 b_{1,i} b_{1,i}^* \lambda _i $$

Therefore, we can define

$$^\wedge V_{22}^\prime \left( {k + 1} \right) = \phi _2 ^\wedge V_{22}^\prime \left( k \right) + 4\mu _w^2 \sigma _{n2}^2 B_1 \left( k \right)B_1^H \left( k \right)\lambda $$
$$\begin{array}{*{20}c} {{\text{where}}} {\phi _2 = I - 4\mu _w B_1 \left( k \right)B_1^H \left( k \right)\Delta + 4\mu _w^2 B_1^2 \left( k \right)B_1^{H2} \left( k \right)\Delta ^2 + 4\mu _w^2 B_1 \left( k \right)B_1^H \left( k \right)\lambda \lambda ^T B_1 \left( k \right)B_1^H \left( k \right)} \\\end{array} $$

Find B 1(k) for \(^\wedge V_{22}^\prime \left( k \right)\)

$$\begin{array}{*{20}c} {{{\text{Find}}}} & {{B_{1} {\left( k \right)} = E_{{nx}} {\left[ {H_{d} {\left( k \right)}} \right]}}} \\ \end{array} $$

The weight update algorithm is

$$H\left( {k + 1} \right) = H\left( k \right) + 2\mu _H X\left( k \right)e_1^* \left( k \right)$$

The error is computed as

$$\matrix {e_1^* (k)}{ = \left( {H_0^H X\left( k \right) - H^H \left( k \right)X\left( k \right) + n_1 \left( k \right)} \right)^* } \\ {}{ = \left( {H_0^T X^H \left( k \right) - H^T \left( k \right)X^* \left( k \right) + n_1^* \left( k \right)} \right)} \\ {}{ = \left( {X^H \left( k \right)H_0 - X^H \left( k \right)H\left( k \right) + n_1^* \left( k \right)} \right)} \\ {}{ = X^H \left( k \right)\left( {H_0 - H\left( k \right)} \right) + n_1^* \left( k \right)} \ $$

Therefore

$$\begin{aligned} H\left( {k + 1} \right) = H\left( k \right) + 2\mu _H X\left( k \right)\left[ {X^H \left( k \right)\left( {H_0 - H\left( k \right)} \right) + n_1^* \left( k \right)} \right] \\ H\left( {k + 1} \right) = H\left( k \right) + 2\mu _H X\left( k \right)X^H \left( k \right)\left( {H_0 - H\left( k \right)} \right) + 2\mu _H X\left( k \right)n_1^* \left( k \right) \\ H\left( {k + 1} \right) = H\left( k \right) - 2\mu _H X\left( k \right)X^H \left( k \right)H\left( k \right) + 2\mu _H X\left( k \right)X^H \left( k \right)H_0 + 2\mu _H X\left( k \right)n_1^* \left( k \right) \\ H\left( {k + 1} \right) = \left( {I - 2\mu _H X\left( k \right)X^H \left( k \right)} \right)H\left( k \right) + 2\mu _H X\left( k \right)X^H \left( k \right)H_0 + 2\mu _H X\left( k \right)n_1^* \left( k \right) \\ \end{aligned} $$
$$\matrix {{\text{Let}}} \hfill {b_1 \left( {k + 1} \right)} \hfill { = E_{nx} \left[ {H\left( {k + 1} \right)} \right]} \hfill \\ {} \hfill {} \hfill { = E_x \left[ {\left( {I - 2\mu _H X(k)X^H (k)} \right)H(k)} \right] + 2\mu _H E_x \left[ {X(k)X^H (k)H_0 } \right] + 2\mu _H E_x \left[ {X(k)n_1^* (k)} \right]} \hfill \ $$

Since n 1(k) is independent of X(k)

$$E_x \left[ {n_1 \left( k \right)} \right] = \phi $$
$$\matrix {b_1 \left( {k + 1} \right)}{ = I - 2\mu _H \left( {E_x \left[ {X\left( k \right)X^H \left( k \right)} \right]} \right)E_x \left[ {H\left( k \right)} \right] + 2\mu _H E_x \left[ {X(k)X^H (k)} \right]H_0 } \\ {}{ = \left( {I - 2\mu _H R} \right)b_1 \left( k \right) + 2\mu _H RH_0 \quad R = \left( {E_x \left[ {X\left( k \right)X^H \left( k \right)} \right]} \right)} \ $$
$$\matrix {{\text{So}}}, {b_1 \left( k \right) = \left( {I - 2\mu _H R} \right)b_1 \left( {k - 1} \right) + 2\mu _H RH_0 } \ $$

And B 1(k) is diagonal matrix with main diagonal b 1(k)

Note that B 1(k) is a diagonal matrix (since it is based on a diagonal version of H). And b 1(k) is the same as B 1(k), except in column vector form (since this is the familiar form for finding the expectation of H). Thus, B 1(k) = diag(b 1(k)).

$$\begin{array}{*{20}c} {{{\text{Now, to find}}}} & {{E{\left[ {X\prime X\prime ^{H} SX\prime X\prime ^{H} } \right]}}} \\ \end{array}$$
$$\begin{array}{*{20}c}{E_x \left[ {X^\prime \left( k \right)X^\prime{H} \left( k \right)SX^\prime \left( k \right)X^\prime{H} \left( k \right)} \right]}{ = \sum\limits_p {\sum\limits_q {E_x \left[ {X_k^\prime X_p^{\prime*} S_{pq} X_q^\prime X_l^{\prime*} } \right]} } } \\{}{ = \sum\limits_p {\sum\limits_q {\left[ {E_x \left[ {X_k^\prime X_p^{\prime*} } \right]S_{pq} E_x \left[ {X_q^\prime X_l^{\prime*} } \right] + E_x \left[ {X_k^\prime X_l^{\prime*} } \right]S_{pq} E_x \left[ {X_p^{\prime*} X_q^\prime } \right]} \right]} } } \\\end{array} $$

But \(E_x \left[ {X_p^{\prime*} X_q^\prime } \right]\) is zero for all p ≠ q, Since \(E_x \left[ {X^\prime X^\prime{H} } \right] = \Delta \)

$$ = E_x \left[ {X_k^\prime X_k^{\prime*} } \right]S_{pq} E_x \left[ {X_l^\prime X_l^{\prime*} } \right] + \delta _{kl} E_x \left[ {X_k^\prime X_l^{\prime*} } \right]\sum\limits_p {S_{pp} } E_x \left[ {X_p^{\prime*} X_p^\prime } \right]$$

But δ kl =1 if k = l

$$ = \Delta S\Delta + \Delta tr\left( {S\Delta } \right)$$

Note for \(^\wedge V_{22}^\prime \left( k \right)\)

From \(E\left[ {H_d \left( k \right)X^\prime \left( k \right)X^\prime{H} \left( k \right)H_d^H \left( k \right)} \right]\)

the k, lth element is

$$\begin{aligned} = \sum\limits_p {\sum\limits_q {E_x } } \left[ {H_{d_{k,p} } X_p^\prime X_q^{\prime*} H_{d_{q,l} }^* } \right] \\ = \sum\limits_p {\sum\limits_q E } \left[ {H_{d_{k,p} } H_{d_{q,l} }^* } \right]E\left[ {X_p^\prime X_q^{\prime*} } \right] \\ \end{aligned} $$

But \(E_x \left[ {X_p^{\prime*} X_q^\prime } \right]\) is zero for all p ≠ q Since \(E_x \left[ {X^\prime X^\prime{H} } \right] = \Delta \) and \(E\left[ {H_{k,p} H_{q,l} } \right] = 0\) when k ≠ p, q ≠ l

$$\matrix {{\text{So,}}} { = \delta _{kl} E\left[ {H_{d_{k,k} } H_{d_{l,l} }^* } \right]E\left[ {X_k^\prime X_l^{\prime*} } \right]} \ $$

Back in the matrix form:

$$ = E\left[ {H_d \left( k \right)H_d^H \left( k \right)} \right]\Delta $$

We can let \(B_1 \left( k \right) = E\left[ {H_d \left( k \right)H_d^H \left( k \right)} \right]\) instead of \(E\left[ {H_d \left( k \right)} \right]\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogunfunmi, T., Paul, T. Analysis of Convergence of a Frequency-Domain LMS Adaptive Filter Implemented as a Multi-Stage Adaptive Filter. J Sign Process Syst Sign Image Video Technol 56, 341–350 (2009). https://doi.org/10.1007/s11265-008-0236-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-008-0236-0

Keywords

Navigation