Skip to main content
Log in

Reconfigurable Morphological Image Processing Accelerator for Video Object Segmentation

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Video object segmentation is an important pre-processing task for many video analysis systems. To achieve the requirement of real-time video analysis, hardware acceleration is required. In this paper, after analyzing existing video object segmentation algorithms, it is found that most of the core operations can be implemented with simple morphology operations. Therefore, with the concepts of morphological image processing element array and stream processing, a reconfigurable morphological image processing accelerator is proposed, where by the proposed instruction set, the operation of each processing element can be controlled, and the interconnection between processing elements can also be reconfigured. Simulation results show that most of the core operations of video object segmentation can be supported by the accelerator by only changing the instructions. A prototype chip is designed to support real-time change-detection-and-background-registration based video object segmentation algorithm. This chip incorporates eight macro processing elements and can support a processing capacity of 6,200 9-bit morphological operations per second on a SIF image. Furthermore, with the proposed tiling and pipelined-parallel techniques, a real-time watershed transform can be achieved using 32 macro processing elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  1. sourceforge.net (2008). Open computer vision library (OpenCV). http://sourceforge.net/projects/opencvlibrary/.

  2. Annaratone, M., Arnould, E., Gross, T., Kung, H. T., & Lam, M. S. (1986). Warp architecture and implementation. In Proc. international symposium on computer architecture (pp. 346–356).

  3. Canny, J. (1996). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6), 679–698.

    Article  Google Scholar 

  4. Chien, S. Y., Huang, Y. W., & Chen, L. G. (2003). Predictive watershed: A fast watershed algorithm for video segmentation. IEEE Transactions on Circuits and Systems for Video Technology, 13(5), 453–461.

    Article  Google Scholar 

  5. Chien, S. Y., Huang, Y. W., Hsieh, B. Y., Ma, S. Y., & Chen, L. G. (2004). Fast video segmentation algorithm with shadow cancellation, global motion compensation, and adaptive threshold techniques. IEEE Transactions on Multimedia, 6(5), 732–748.

    Article  Google Scholar 

  6. Chien, S. Y., Ma, S. Y., & Chen, L. G. (2001). A partial-result-reuse architecture and its design technique for morphological operations. In Proc. of 2001 IEEE international conference on acoustics, speech, and signal processing vol. 2, (pp. 1185–1188).

  7. Chien, S. Y., Ma, S. Y., & Chen, L. G. (2002). Efficient moving object segmentation algorithm using background registration technique. IEEE Transactions on Circuits and Systems for Video Technology, 12(7), 577–586.

    Article  Google Scholar 

  8. Fountain, T. J., Matthews, K. N., & Duff, M. J. B. (1988). The CLIP7A image processor. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(3), 310–319.

    Article  Google Scholar 

  9. Garrido, L., Oliveras, A., & Salembier, P. (1997). Motion analysis of image sequences using connected operators. In Proc. of visual communication and image processing (pp. 546–557).

  10. Goldstein, S., Schmit, H., Budiu, M., Cadambi, S., Moe, M., & Taylor, R. (2000). PipeRench: A reconfigurable architecture and compiler. IEEE Computer, 33(4), 70–77.

    Google Scholar 

  11. Kapasi, U., Rixner, S., Dally, W., Khailany, B., Ahn, J. H., Mattson, P., et al. (2003). Programmable stream processors. Computer, 36(8), 54–62.

    Article  Google Scholar 

  12. Kim, C., & Hwang, J. N. (2002). Fast and automatic video object segmentation and tracking for content-based applications. IEEE Transactions on Circuits and Systems for Video Technology, 12(2), 122–129.

    Article  Google Scholar 

  13. Kim, M., Choi, J. G. D., Kim, H. L., Lee, M. H., Ahn, C., & Ho, Y. S. (1999). A VOP generation tool: Automatic segmentation of moving objects in image sequences based on spatio-temporal information. IEEE Transactions on Circuits and Systems for Video Technology, 9(8), 1216–1226.

    Article  Google Scholar 

  14. Kishore, A. D., & Srinivasan, S. (2003). A distributed memory architecture for morphological image processing. In Proc. international conference on information technology: Coding and computing (pp. 536–540).

  15. Klein, J. C., & Peyrard, R. (1989). Pimm1, an image processing ASIC based on mathematical morphology. In Proc. of second annual IEEE ASIC seminar and exhibit.

  16. Kuo, C. J., Odeh, S. F., & Huang, M. C. (2001). Image segmentation with improved watershed algorithm and its FPGA implementation. In Proc. of the 2001 IEEE international symposium on circuits and systems, vol. 2, (pp. 753–756).

  17. Kyo, S., Koga, T., Okazaki, S., & Kuroda, I. (2003). A 51.2-GOPS scalable video recognition processor for intelligent cruise control based on a linear array of 128 four-way VLIW processing elements. IEEE Journal of Solid-State Circuits, 38(11), 1992–2000.

    Article  Google Scholar 

  18. Lougheed, R. M., & McCubbrey, D. L. (1980). The Cytocomputer: A practical pipelined image processor. In Proc. international symposium on computer architecture (pp. 217–277).

  19. Mech, R., & Wollborn, M. (1998). A noise robust method for 2D shape estimation of moving objects in video sequences considering a moving camera. Signal Processing, 66(2), 203–217.

    Article  MATH  Google Scholar 

  20. Meier, T., & Ngan, K. N. (1998). Video segmentation for content-based coding. IEEE Transactions on Circuits and Systems for Video Technology, 9(8), 1190–1203.

    Article  Google Scholar 

  21. MPEG Video Group (2001). Annex F: Preprocessing and postprocessing. ISO/IEC JTC 1/SC 29/WG11 N4350.

  22. Noguet, D. (1997). A massively parallel implementation of the watershed based oncellular automata. In Proc. of the 1997 IEEE international conference on application-specific systems, architecture and processors (pp. 42–52)

  23. Peleg, A., & Weiser, U. (1996). MMX technology extension to the Intel architecture. IEEE Micro, 16(4), 42–50.

    Article  Google Scholar 

  24. Peyrard, R., Gauthire, M., & Klein, J. C. (1994). Real-time road segmentation using a morphological multi-pipeline processor. In Proc. of the intelligent vihecles symposium (pp. 290–295).

  25. Salembier, P., Oliveras, A., & Garrido, L. (1998). Antiextensive connected operators for image sequence processing. IEEE Transactions on Image Processing, 7(4), 555–570.

    Article  Google Scholar 

  26. Serra, J. (1982). Image analysis and mathematical morphology. London: Academic.

    MATH  Google Scholar 

  27. Shamim, A., & Robinson, J. A. (2002). Object-based video coding by global-to-local motion segmentation. IEEE Transactions on Circuits and Systems for Video Technology, 12(12), 1106–1116.

    Article  Google Scholar 

  28. Soille, P. (2007). Morphological image analysis. New York: Springer.

    Google Scholar 

  29. Tsai, Y. P., Lai, C. C., Hung, Y. P., & Shih, Z. C. (2005). A Bayesian approach to video object segmentation via merging 3-D watershed volumnes. IEEE Transactions on Circuits and Systems for Video Technology, 15(1), 175–180.

    Article  Google Scholar 

  30. Tsaig, Y., & Averbuch, A. (2002). Automatic segmentation of moving objects in video sequences: A region labeling approach. IEEE Transactions on Circuits and Systems for Video Technology, 12(7), 597–612.

    Article  Google Scholar 

  31. Vincent, L., & Soille, P. (1991). Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligece, 13(6), 583–598.

    Article  Google Scholar 

  32. Wang, D. (1998). Unsupervised video segmentation based on watersheds and temporal tracking. IEEE Transactions on Circuits and Systems for Video Technology, 8(5), 539–546.

    Article  Google Scholar 

  33. Wiatr, K. (1998). Pipeline architecture of specialized reconfigurable processors in FPGA structures for real-time image pre-processing. In Proc. of 24th Euromicro conference (pp. 25–27).

  34. Wiatr, K. (2002). Median and morphological specialized processors for a real-time image data processing. EURASIP Journal on Applied Signal Processing, 2002(1), 115–121.

    Article  MATH  Google Scholar 

  35. Xu, H., Younis, A. A., & Kabuka, M. R. (2004). Automatic moving object extraction for content-based applications. IEEE Transactions on Circuits and Systems for Video Technology, 14(6), 796–812.

    Article  Google Scholar 

  36. Zhang, D., & Lu, G. (2001). Segmentation of moving objects in image sequence: A review. Circuits Systems Signal Processing, 20(2), 143–183.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank chip implementation center (CIC) for EDA tool and design flow support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Yi Chien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chien, SY., Chen, LG. Reconfigurable Morphological Image Processing Accelerator for Video Object Segmentation. J Sign Process Syst 62, 77–96 (2011). https://doi.org/10.1007/s11265-008-0311-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-008-0311-6

Keywords