Abstract
Hip angle is a major parameter in gait analysis while gait analysis plays an important role in healthcare, animation and other applications. Accurate estimation of hip angle using wearable inertial sensors in ambulatory environment remains a challenge because 1) the non-linear nature of thigh movement has not been well addressed, and 2) the variation of micro-inertial sensor measurement noise has not been studied yet. We propose to use Hybrid Dynamic Bayesian Network (HDBN) to model the non-linear hip angle dynamics and variation of measurement noise levels, and Gaussian Particle Filter (GPF) to estimate the hip angle during gait cycles from the measurements of the wearable accelerometers that are attached to the thighs. The experiments have been conducted and the results have shown that the proposed method can achieve significant accuracy improvement over the previous work on the ambulatory hip angle estimation.







Similar content being viewed by others
References
Salarian, A., Russmann, H., Vingerhoets, F. J., et al. (2004). Gait assessment in Parkinson’s disease: Toward an ambulatory system for long-term monitoring. IEEE Transactions on Biomedical Engineering, 51(8), 1434–1443.
Beauchet, O., Allali, G., Berrut et al. (2008). Gait analysis in demented subjects: Interests and perspectives. Neuropsychiatr Dis Treat 4(14).
Read, H. S., Hazlewood, M. E., Hillman, S. J., et al. (2003). Edinburgh visual gait score for use in cerebral palsy. Journal of pediatric orthopedics, 23(3), 296–301. doi:10.1097/00004694-200305000-00005.
Welch, G., & Foxlin, E. (2002). Motion tracking: No silver bullet, but a respectable arsenal. IEEE computer graphics and applications, 22(6), 24–38. doi:10.1109/MCG.2002.1046626.
Vlasic, D., Adelsberger, R., Vannucci, G., et al. (2007). Practical motion capture in everyday surroundings. ACM Trans Graph, 26(3), TOG doi:10.1145/1276377.1276421
Mayagoitia, R. E., Nene, A. V., & Veltink, P. H. (2002). Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternate to optical motion analysis systems. Journal of biomechanics, 35, 537–542. doi:10.1016/S0021-9290(01)00231-7.
Dejnabadi, H., Jolles, B. M., & Aminian, K. (2008). A New Approach for Quantitative Analysis of Inter-Joint Coordination During Gait. IEEE Transactions on Biomedical Engineering, 55(2), 755–764. doi:10.1109/TBME.2007.901034.
Favre, J., Jolles, B.M., Siegrist, O., Aminian, K. (2006). Quaternion-based fusion of gyroscopes and accelerometers to improve 3D angle measurement. Electron Lett, 42(11) doi:10.1049/el:20060124
Dong, L., Wu, J. K., & Bao, X. M. (2006). Tracking of Thigh Flexion Angle during Gait Cycles in an Ambulatory Activity Monitoring Sensor Network. Acta Automatica Sinica, 32(6), 938–946.
Dong, L., Wu, J., & Bao, X. (2006). A Hybrid HMM/Kalman Filter for Tracking Hip Angle in Gait Cycle. IEICE TRANSACTIONS on Information and Systems, 7, 2319–2323.
Murphy, K.P. (1998.) Switching kalman filters. Dept. of Computer Science, University of California, Berkeley, Tech. Rep.
Doucet, A., Gordon, N., & Krishnamurthy, V. (2001). Particle filters for state estimation of jump Markov linear systems. IEEE transactions on signal processing, 49(3), 613–624. doi:10.1109/78.905890.
Chen, R., & Liu, J. S. (2000). Mixture kalman filters. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 62, 493–508. doi:10.1111/1467-9868.00246.
De Freitas, N. (2002). Rao-Blackwellised particle filtering for fault diagnosis. 2002 IEEE Aerospace Conference Proceedings, 4, 1764–1767.
Hutter, F., Dearden, R. (2002). The gaussian particle filter for diagnosis of non-linear systems. Proceedings of the Fourteenth International Workshop on the Principles of Diagnosis.
Murray, M., Drought, A. B., & Kory, R. C. (1964). Walking patterns of normal men. The journal of bone and joint surgery, 46(2), 335.
Arulampalam, M. S., Maskell, S., Gordon, N., et al. (2002). A tutorial on particle filters for online nonlinear/non-GaussianBayesian tracking. IEEE transactions on signal processing, 50(2), 174–188. doi:10.1109/78.978374.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, Z., Huang, Z. & Wu, J. Ambulatory Hip Angle Estimation using Gaussian Particle Filter. J Sign Process Syst Sign Image Video Technol 58, 341–357 (2010). https://doi.org/10.1007/s11265-009-0373-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11265-009-0373-0