Skip to main content
Log in

DOA Estimation for Multiple Sparse Sources with Arbitrarily Arranged Multiple Sensors

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This paper proposes a method for estimating the direction of arrival (DOA) of multiple source signals for an underdetermined situation, where the number of sources N exceeds the number of sensors M (M < N). Some DOA estimation methods have already been proposed for underdetermined cases. However, since most of them restrict their microphone array arrangements, their DOA estimation ability is limited to a 2-dimensional plane. To deal with an underdetermined case where sources are distributed arbitrarily, we propose a method that can employ a 2- or 3-dimensional sensor array. Our new method employs the source sparseness assumption to handle an underdetermined case. Our formulation with the sensor coordinate vectors allows us to employ arbitrarily arranged sensors easily. We obtained promising experimental results for 2-dimensionally distributed sensors and sources 3×4, 3×5 (#sensors × #speech sources), and for 3-dimensional case with 4×5 in a room (reverberation time (RT) of 120 ms). We also investigate the DOA estimation performance under several reverberant conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Pillai, S. U. (1989). Array signal processing. New York: Springer.

    Google Scholar 

  2. Brandstein, M., & Ward, D. (Eds.) (2001). Microphone arrays. New York: Springer.

    Google Scholar 

  3. Van Trees, H. L. (Ed.) (2002). Optimum array processing. New York: Wiley.

    Google Scholar 

  4. Schmidt, R. O. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation 34, 276–280.

    Article  Google Scholar 

  5. Sawada, H., Mukai, R., Araki, S., & Makino, S. (2005). Frequency-domain blind source separation. In Benesty, J., Makino, S., Chen, J. (Eds.), Speech enhancement pp. 299–327. New York: Springer.

    Chapter  Google Scholar 

  6. Sawada, H., Mukai, R., Araki, S., & Makino, S. (2005). Multiple source localization using independent component analysis. In Proc. AP-S/URSI2005.

  7. Lombard, A., Rosenkranz, T., Buchner, H., & Kellermann, W. (2008). Exploiting the self-steering capability of blind source separation to localize two or more sound sources in adverse environments. In Proc. ITG conference on speech communication.

  8. Yılmaz, Ö., & Rickard, S. (2004). Blind separation of speech mixtures via time-frequency masking. IEEE Transactions on SP 52(7), 1830–1847.

    Article  Google Scholar 

  9. Bofill, P., & Zibulevsky, M. (2000). Blind separation of more sources than mixtures using sparsity of their short-time Fourier transform. In Proc. ICA2000 (pp. 87–92).

  10. Araki, S., Sawada, H., Mukai, R., & Makino, S. (2005). A novel blind source separation method with observation vector clustering. In Proc. 2005 international workshop on acoustic echo and noise control (IWAENC 2005) (pp. 117–120).

  11. Araki, S., Sawada, H., Mukai, R., & Makino, S. (2007). Underdetermined blind sparse source separation for arbitrarily arranged multiple sensors. Signal Processing 87, 1833–1847.

    Article  MATH  Google Scholar 

  12. Zhang, Y., Mu, W., & Amin, M. G. (1999). Maximum-likelihood methods for array processing based on time-frequency distributions. In Proc. SPIE (Vol. 3807, 502–513).

  13. Zhang, Y., Mu, W., & Amin, M. G. (2000). Time-frequency maximum likelihood methods for direction finding. Journal of the Franklin Institute 337(4), 483–497.

    Article  MATH  Google Scholar 

  14. Burintramart, S., Sarkar, T. K., Zhang, Y., & Salazar-Palma, M. (2007). Nonconventional least squares optimization for DOA estimation. IEEE Transactions on Antennas and Propagation 55(3), 707–714.

    Article  Google Scholar 

  15. Rickard, S., & Dietrich, F (2000). DOA estimation of many W-disjoint orthogonal sources from two mixtures using DUET. In: Proc. SSAP2000 (pp. 311–314).

  16. Shamsunder, S., & Giannakis, G. B. (1993). Modeling of non-Gaussian array data using cumulants: DOA estimation of more sources with less sensors. Signal Processing 30, 279–297.

    Article  MATH  Google Scholar 

  17. Mitianoudis, N., & Stathaki, T. (2007). Batch and online underdetermined source separation using Laplacian mixture model. IEEE Transactions on Audio, Speech, and Language Processing 15(6), 1818–1832.

    Article  Google Scholar 

  18. Matsuo, M., Hioka, Y., & Hamada, N. (2005). Estimating DOA of multiple speech signals by improved histogram mapping method. In Proc. IWAENC2005 (pp. 129–132).

  19. Karbasi, A., Sugiyama, A. (2006). DOA estimation method for an arbitrary triangular microphone arrangement. In Proc. EUSIPCO2006.

  20. Araki, S., Sawada, H., Mukai, R., & Makino, S. (2006). DOA estimation for multiple sparse sources with normalized observation vector clustering. In Proc. ICASSP2006 (pp. 33–36).

  21. Araki, S., Sawada, H., Mukai, R., & Makino, S. (2006). Performance evaluation of sparse source separation and DOA estimation with observation vector clustering in reverberant environments. In Proc. IWAENC2006.

  22. Aoki, M., Okamoto, M., Aoki, S., Matsui, H., Sakurai, T., & Kaneda, Y. (2001). Sound source segregation based on estimating incident angle of each frequency component of input signals acquired by multiple microphones. Acoustical Science and Technology 22, 149–157.

    Article  Google Scholar 

  23. Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification, 2nd edn. New York: Wiley Interscience

    Google Scholar 

  24. Mukai, R., Sawada, H., Araki, S., & Makino, S. (2004). Frequency domain blind source separation for many speech signals. In: Proc. ICA 2004. LNCS 3195 (pp. 461–469)

  25. Rickard, S., & Yılmaz, Ö (2002). On the approximate W-disjoint orthogonality of speech. In Proc. ICASSP2002 (Vol. I, pp. 529–532)

  26. ISO 3382 (1997). Acoustics—Measurement of the reverberation time of rooms with reference to other acoustical parameters.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoko Araki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araki, S., Sawada, H., Mukai, R. et al. DOA Estimation for Multiple Sparse Sources with Arbitrarily Arranged Multiple Sensors. J Sign Process Syst 63, 265–275 (2011). https://doi.org/10.1007/s11265-009-0413-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-009-0413-9

Keywords

Navigation