Skip to main content
Log in

Body Sensor Network Based Context-Aware QRS Detection

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

In this paper, a body sensor network (BSN) based context-aware QRS detection scheme is proposed. The algorithm uses the context information provided by the body sensor network to improve the QRS detection performance by dynamically selecting those leads with the best SNR and taking advantage of the best features of two complementary detection algorithms. The accelerometer data from the BSN are used to classify the daily activities of patients and provide context information. The classification results indicate the types of activities that were engaged in. They also indicate their corresponding intensity, which is related to the signal-to-noise ratio (SNR) of the ECG recordings. Activity intensity is first fed to the lead selector to eliminate those leads with low SNR, and then is fed to a selector to select a proper QRS detector according to the noise level. An MIT-BIH noise stress test database is used to evaluate the algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Data from Centers for Disease Control and Prevention (CDC) (1999).

  2. IMIA Yearbook of Medical Informatics 2005: Ubiquitous Health Care Systems (pp. 125–138) (2004).

  3. Anliker, U., Ward, J. A., Lukowicz, P., Troster, G., Dolveck, F., Baer, M., et al. (2004). Amon: A wearable multiparameter medical monitoring and alert system. IEEE Transactions on Information Technology in Biomedicine, 8, 415–427.

    Article  Google Scholar 

  4. Jovanov, E., Milenkovic, A., Otto, C., & de Groen, P. C. (2005). A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2, 6.

    Article  Google Scholar 

  5. Hill, J., & Culler, D. (2002). Mica: A wireless platform for deeply embedded networks. IEEE Micro, 22, 12–24.

    Article  Google Scholar 

  6. Gao, T., Greenspan, D., Welsh, M., Juang, R. R., & Alm, A. (2005). Vital signs monitoring and patient tracking over a wireless network. In Proceedings of the 27th IEEE EMBS annual international conference.

  7. Wei, Y., Heidemannvand, J., & Estrin, D. (2002). An energy-efficient mac protocol for wireless sensor networks. In Proceedings of the IEEE Infocom (pp. 1567–1576).

  8. van Dam, T., & Langendoen, K. (2003). An adaptive energy-efficient mac protocol for wireless sensor networks. In Proceedings of the 1st ACM conf. on embedded networked sensor systems (Sen-Sys) (pp. 171–180).

  9. Li, H., & Tan, J. (2005). An ultra-low-power medium access control protocol for body sensor network. In Proceedings of the 27th IEEE EMBS annual international conference (pp. 2451–2454).

  10. Karantonis, D. M., Narayanan, M. R., Mathie, M., Lovell, N. H., & Celler, B. G. (2006). Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Transactions on Information Technology in Biomedicine, 10(1), 156–167.

    Article  Google Scholar 

  11. Parkka, J., Ermes, M., Korpipaa, P., Mantyjarvi, J., Peltola, J., & Korhonen, I. (2006). Activity classification using realistic data from wearable sensors. IEEE Transactions on Information Technology in Biomedicine, 10(1), 119–128.

    Article  Google Scholar 

  12. Peter, F., Cohn, K., & Fox, M. (2003). Silent myocardial ischemia. Circulation, 108, 1263.

    Article  Google Scholar 

  13. Berman, D. S., Rozanski, A., & Knoebel, S. B. (1987). The detection of silent ischemia: Cautions and precautions. Circulation, 75(1), 101–105.

    Article  Google Scholar 

  14. Marcus, R., Lowe, R. r., Froelicher, V. F., & Do, D. (1987). The exercise test as gatekeeper. limiting access or appropriately directing resources? Chest, 107, 1442–1446.

    Article  Google Scholar 

  15. Cole, C. R., Blackstone, E. H., Pashkow, F. J., Snader, C. E., & Lauer, M. S. (1999). Heart-rate recovery immediately after exercise as a predictor of mortality. The New England Journal of Medicine, 341, 351–357.

    Article  Google Scholar 

  16. Vivekananthan, D. P., Blackstone, E. H., Pothier, C. E., & Lauer, M. S. (2003). Heart rate recovery after exercise is a predictor of mortality, independent of the angiographic severity of coronary disease. Journal of the American College of Cardiology, 42, 831–838.

    Article  Google Scholar 

  17. Makikallio, T. H., Huikuri, H. V., Makikallio, A., Sourander, L. B., Mitrani, R. D., Castellanos, A., et al. (2001). Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects. Journal of the American College of Cardiology, 37, 1395–1402.

    Article  Google Scholar 

  18. IEEE 802.15.4, Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE, 1 October 2003.

  19. Friesen, G., Jannett, T., Jadallan, M., Yates, S., Quint, S., & Nagle, H. (1990). A comparison of the noise sensitivity of nine qrs detection algorithms. IEEE Transactions on Biomedical Engineering, 37, 85–98.

    Article  Google Scholar 

  20. Portet, F., Hernandez, A. I., & Carrault, G. (2005). Evaluation of real-time qrs detection algorithms in variable contexts. Medical & Biological Engineering, 43, 379–385.

    Article  Google Scholar 

  21. Engelse, W. A. H., & Zeelenberg, C. (1979). A single scan algorithm for qrs-detection and feature extraction. Computers in Cardiology, 6, 37–42.

    Google Scholar 

  22. Zong, W., Moody, G. B., & Jiang, D. (2003). A robust open-source algorithm to detect onset and duration of qrs complexes. Computers in Cardiology, 30, 737–740.

    Google Scholar 

  23. Mark, R., & Moody, G. (1988). Mit-bih arrhythmia data base directory. Massachusetts Institute of Technology.

  24. Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., et al. (2000). Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals. Circulation, 101, e215–e220.

    Google Scholar 

Download references

Acknowledgements

This paper is supported in part by the Chinese 863 plan under key project on core technologies for modular robots, project #2009AA043901, the National Science Foundation under Grant ECS #0528967 and CSR #0720781.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxing Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, H., Li, H. & Tan, J. Body Sensor Network Based Context-Aware QRS Detection. J Sign Process Syst 67, 93–103 (2012). https://doi.org/10.1007/s11265-010-0507-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-010-0507-4

Keywords

Navigation