Skip to main content
Log in

System-on-Chip Subband Decomposition Architectures for Ultrasonic Detection Applications

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This paper presents a hardware efficient system-on-chip (SoC) sensor architecture for ultrasonic imaging applications that uses the split-spectrum processing (SSP) algorithm. The SSP design is realized using recursive subband decomposition techniques for achieving minimal hardware and power consumption. Recursive implementations of discrete Fourier transform (DFT) and discrete cosine transform (DCT) are presented for subband decomposition which result in sparse transform operations and significantly reduced hardware and power requirements. A comparative study and performance results present the advantages of the recursive hardware architecture compared to the conventional implementation of the SSP algorithm using IP cores for FFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Sinha, S. K., Schokker, A. J., & Iyer, S. R. (2003). Non-contact ultrasonic imaging of post tensioned bridges to investigate corrosion and void status. IEEE Proceedings of Sensors, 1, 487–492.

    Google Scholar 

  2. Mori, H., Oshima, T., Mikami, S., Honma, M., & Funatsu, M. (1994). “Effect of individual decision of bridge expert on total evaluation of bridge integrity”. Journal of Constructional Steel, 2.

  3. Chassignole, B., Villard, D., Dubuget, M., Baboux, J. C., & El Guerjouma, R. (2000). Characterization of austenitic stainless steel welds for ultrasonic NDT. Review of Progress in QNDE, 20, 1325–1332.

    Google Scholar 

  4. Halkjaer, S., Sorensen, M. P., & Kristensen, W. D. (2000). The propagation of ultrasound in a austenitic weld. Ultrasonics, 38, 256–261.

    Article  Google Scholar 

  5. Carino, N. J., Sansalone, M., & Hsu, N. H. (1986). “Flaw detection in concrete by frequency spectrum analysis of impact-echo waveforms”. International Advances in Nondestructive Testing, 12.

  6. Saniie, J., Nagle, D., & Donohue, K. (1991). Analysis of order statistic filters applied to ultrasonic flaw detection using split-spectrum processing. IEEE Transactions on Ferroelectrics and Frequency Control, 38(2), 133–140.

    Article  Google Scholar 

  7. Lu, Y., Oruklu, E., & Saniie, J. (2008). Fast chirplet transform with FPGA-based implementation. IEEE Signal Processing Letters, 15(1), 577–580.

    Google Scholar 

  8. Jung, S., & Kim, S. S. (2007). Hardware implementation of a real-time neural network controller with a DSP and an FPGA for nonlinear systems. IEEE Transactions on Industrial Electronics, 54(1), 265–271.

    Google Scholar 

  9. Rodriguez-Andina, J. J., Moure, M. J., & Valdes, M. D. (2007). Features, design, tools, and application domains of FPGAs. IEEE Transactions on Industrial Electronics, 54, 1810–1823.

    Article  Google Scholar 

  10. Hong Hu, C., Zhou, Q., & Shung, K. (2008). Design and implementation of high frequency ultrasound pulsed-wave Doppler using FPGA. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 55(9), 2109–2111.

    Article  Google Scholar 

  11. Hernandez, A., Urena, J., Hernanz, D., Garcia, J. J., Mazo, M., Derutin, J. P., et al. (2003). Real-time implementation of an efficient Golay correlator (EGC) applied to ultrasonic sensorial systems. Microprocessors and Microsystems, 27(8), 397–406.

    Article  Google Scholar 

  12. Saniie, J., & Nagle, D. (1992). Analysis of order statistic CFAR threshold estimators for improved ultrasonic flaw detection. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 35(5), 618–630.

    Article  Google Scholar 

  13. Weber, J., Oruklu, E., & Saniie, J. (2011). FPGA-based configurable frequency diverse ultrasonic target detection system. IEEE Transactions on Industrial Electronics, 58(3), 871–879.

    Article  Google Scholar 

  14. Xilinx LogiCORE IP Fast Fourier Transform (FFT), Product Specification, DS260, June 2009. Available at: http://www.xilinx.com/support/documentation/ip_documentation/xfft_ds260.pdf.

  15. Beck, R., Dempster, A. G., & Kale, I. (2001). Finite-precision Goertzel filters used for signal tone detection. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 48(7), 691–700.

    Article  MATH  Google Scholar 

  16. Hwang, J.-K., & Li, Y.-P. (2010). Efficient recursive IDFT scheme for complex-valued signals in tap-selective maximum-likelihood channel estimation. Journal of Signal Processing Systems, 60(1), 71–80.

    Article  Google Scholar 

  17. Oruklu, E., Weber, J., & Saniie, J. (2008). “Recursive filters for subband decomposition algorithms in ultrasonic detection applications”, IEEE Ultrasonics Symposium, pp. 1881–1884, November 2008.

  18. Xilinx XtremeDSP for Virtex-4 FPGAs User Guide, UG073, May 15, 2008. Available at http://www.xilinx.com/support/documentation/user_guides/ug073.pdf.

  19. Aburdene, M. F., Zheng, J., & Kozick, R. J. (1995). Computation of discrete cosine transform using Clenshaw’s recurrence formula. IEEE Signal Processing Letters, 1(7), 101–102.

    Google Scholar 

  20. Chen, C., Liu, B., Yang, J., & Wang, J. (2004). Efficient recursive structures for forward and inverse discrete cosine. IEEE Transactions on Signal Processing, 52(9), 2665–2669.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdal Oruklu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oruklu, E., Weber, J. & Saniie, J. System-on-Chip Subband Decomposition Architectures for Ultrasonic Detection Applications. J Sign Process Syst 68, 367–377 (2012). https://doi.org/10.1007/s11265-011-0623-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-011-0623-9

Keywords

Navigation