Skip to main content
Log in

Design and Factorization of Two-Channel Perfect Reconstruction Filter Banks with Causal-Stable IIR Filters

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

In this paper, new design and factorization methods of two-channel perfect reconstruction (PR) filter banks (FBs) with casual-stable IIR filters are introduced. The polyphase components of the analysis filters are assumed to have an identical denominator in order to simplify the PR condition. A modified model reduction is employed to derive a nearly PR causal-stable IIR FB as the initial guess to obtain a PR IIR FB from a PR FIR FB. To obtain high quality PR FIR FBs for carrying out model reduction, cosine-rolloff FIR filters are used as the initial guess to a nonlinear optimization software for solving to the PR solution. A factorization based on the lifting scheme is proposed to convert the IIR FB so obtained to a structurally PR system. The arithmetic complexity of this FB, after factorization, can be reduced asymptotically by a factor of two. Multiplier-less IIR FB can be obtained by replacing the lifting coefficients with the canonical signal digitals (CSD) or sum of powers of two (SOPOT) coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Vaidyanathan, P. P. (1993). Multirate systems and filter banks. Englewood Cliffs: Prentice Hall.

    MATH  Google Scholar 

  2. Vaidyanathan, P. P. (1990). Multirate digital filters, filter banks, polyphase networks and applications: a tutorial. Proceedings of the IEEE, 78, 56–93.

    Article  Google Scholar 

  3. Akansu, A. N., & Haddad, R. A. (1992). Multiresolution signal decomposition: Transforms, subbands, and wavelets. Boston: Academic.

    MATH  Google Scholar 

  4. Vetterli, M. (1987). A theory of multirate filter banks. IEEE Transactions on ASSP, 35(3), 356–372.

    Article  Google Scholar 

  5. Ramstad, T. A. (1988). IIR filterbank for subband coding of images. Proceedings of IEEE ISCAS’1988, 1, 827–830.

    Google Scholar 

  6. Mitra, S. K., Creusere, C. D., & Babic, H. (1992). A novel implementation of perfect reconstruction QMF banks using IIR filters for infinite length signals. Proceedings of IEEE ISCAS, 5, 2312–2315.

    Google Scholar 

  7. Herley, C., & Vetterli, M. (1993). Wavelets and recursive filter banks. IEEE Transactions on SP, 41(8), 2536–2556.

    Article  MATH  Google Scholar 

  8. Basu, S., Chiang, C. H., & Choi, H. N. (1995). Wavelets and perfect reconstruction subband coding with causal stable IIR filters. IEEE TCAS-II, 42(1), 24–38.

    MATH  Google Scholar 

  9. Sijercic, Z., & Agarwal, G. (1996). Factorizations of IIR biorthogonal filter banks based on generalized Bezout identity. Proceedings of IEEE ISCAS, 2, 77–80.

    Google Scholar 

  10. Okuda, M., Fukuoka, T., Ikehara, M., & Takahashi, S. (1997). Design of causal IIR filter banks satisfying perfect reconstruction. Proceedings of IEEE ISCAS, 4, 2433–2436.

    Google Scholar 

  11. Vaidyanathan, P. P., Mitra, S. K., & Neuvo, Y. (1986). A new approach to the realization of low sensitivity IIR digital filters. IEEE Transactions on ASSP, 34(2), 350–361.

    Article  Google Scholar 

  12. Bregovic, R., & Saramaki, T. (2001). “Design of causal stable perfect reconstruction two-channel IIR filter banks,” in Proc. IEEE ISPA2001., pp. 545–550, June 2001.

  13. Phoong, S. M., Kim, C. W., Vaidyanathan, P. P., & Ansari, R. (1995). A new class of two-channel biorthogonal filter banks and wavelet bases. IEEE Transactions on SP, 43(3), 649–665.

    Article  Google Scholar 

  14. Mao, J. S., Chan, S. C., Liu, W., & Ho, K. L. (2000). Design and multiplier-less implementation of a class of two-channel PR FIR filterbanks and wavelets with low system delay. IEEE Transactions on SP, 48, 3379–3394.

    Article  MathSciNet  Google Scholar 

  15. Ansari, R., Kim, C. W., & Dedovic, M. (1999). Structure and design of two-channel filter banks derived from a triplet of halfband filters. IEEE TCAS-II, 46(12), 1487–1496.

    Google Scholar 

  16. Tsui, K. M., & Chan, S. C. (2006). Multi-plet two-channel FIR and causal stable IIR perfect reconstruction filter banks. IEEE TCAS-I., 53(12), 2804–2817.

    MathSciNet  Google Scholar 

  17. Chan, S. C., Pun, C. K., & Ho, K. L. (2004). New design and realization for a class of perfect reconstruction two-channel FIR filter banks and wavelets bases. IEEE Transactions on SP, 52, 2135–2141.

    Article  Google Scholar 

  18. Chan, S. C., Tsui, K. M., & Tse, K. W. (2004). “Design of constrained IIR and interpolated IIR filters using a new semi-definite programming based model reduction technique,” in Proc. EUSIPCO’2004, pp. 1245–1248, Sept. 2004.

  19. Brandenstein, H., & Unbehauen, R. (1998). Least-squares approximation of FIR by IIR digital filters. IEEE Transactions on SP, 46(1), 21–30.

    Article  Google Scholar 

  20. Mao, J. S., Chan, S. C., & Ho, K. L. (1999). Theory and design of causal stable IIR PR cosine-modulated filter banks. Proceedings of IEEE ISCAS, 3, 427–430.

    Google Scholar 

  21. Chan, S. C., Luo, Y., & Ho, K. L. (1998). M-channel compactly supported biorthogonal cosine-modulated wavelets bases. IEEE Transactions on SP, 46(4), 1142–1151.

    Article  MathSciNet  Google Scholar 

  22. Chan, S. C., Mao, J. S., Yiu, P. M., & Ho, K. L. (2004). The factorization of M-channel FIR and IIR cosine-modulated filter banks and their multiplier-less realization using SOPOT coefficients. Proceedings of IEEE MWSCAS, 2, 109–112.

    Google Scholar 

  23. Karp, T., Mertins, A., & Schuller, G. (2001). Efficient biorthogonal cosine-modulated filter banks. EURASP Signal Processing, 81, 997–1016.

    Article  MATH  Google Scholar 

  24. Chan, S. C., & Yin, S. S. (2004). “On the design of low delay nearly-PR and PR FIR cosine modulated filter banks having approximate cosine-rolloff transition band,” in Proc. EUSIPCO’2004, pp. 1253–1256, Sept. 2004.

  25. Daubechies, I., & Sweldens, W. (1998). Factoring wavelet transform into lifting steps. Journal of Fourier Analysis and Applications, 4(3), 247–269.

    Article  MathSciNet  MATH  Google Scholar 

  26. Chan, S. C., Liu, W., & Ho, K. L. (2001). Perfect reconstruction modulated filter banks with sum of powers-of-two coefficients. IEEE SPL, 8(6), 163–166.

    Google Scholar 

Download references

Acknowledgment

This paper is supported by National Natural Science Foundation of China (NSFC) (No. 61102118) and Natural Science Foundation of Anhui Province Higher Education Institutions (No. KJ2011Z002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, S.S., Chan, S.C. Design and Factorization of Two-Channel Perfect Reconstruction Filter Banks with Causal-Stable IIR Filters. J Sign Process Syst 68, 353–366 (2012). https://doi.org/10.1007/s11265-011-0624-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-011-0624-8

Keywords

Navigation