Skip to main content

Advertisement

Log in

Multi-source Neural Activity Estimation and Sensor Scheduling: Algorithms and Hardware Implementation

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Electroencephalography (EEG) and magnetoencephalography (MEG) measurements are used to localize neural activity by solving the electromagnetic inverse problem. In this paper, we propose a new approach based on the particle filter implementation of the probability hypothesis density filter (PF-PHDF) to automatically estimate the unknown number of time-varying neural dipole sources and their parameters using EEG/MEG measurements. We also propose an efficient sensor scheduling algorithm to adaptively configure EEG/MEG sensors at each time step to reduce total power consumption. We demonstrate the improved performance of the proposed algorithms using simulated neural activity data. We map the algorithms onto a Xilinx Virtex-5 field-programmable gate array (FPGA) platform and show that it only takes 10 ms to process 100 data samples using 6,400 particles. Thus, the proposed system can support real-time processing of an EEG/MEG neural activity system with a sampling rate of up to 10 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Miao, L., Zhang, J.J., Chakrabarti, C., Papandreou-Suppappola, A., Kovvali, N. (2011). Real-time closed-loop tracking of an unknown number of neural sources using probability hypothesis density particle filtering. In IEEE workshop on signal processing systems (pp. 367–372).

  2. Cohen, D. (1972). Magnetoencephalography: evidence of magnetic fields produced by alpha rhythm currents. Science, 161, 664–666.

    Article  Google Scholar 

  3. Hämäläinen, M., Hari, R., Ilmoniemi, R.J., Knuuttila, J., Lounasmaa, O.V. (1993). Magnetoencephalography—theory, instrumentation and applications to nonivasive studies of the working human brain. Reviews of Modern Physics, 65, 413–497.

    Article  Google Scholar 

  4. Mosher, J.C., Lewis, P.S., Leahy, R.M. (1992). Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Transactions on Biomedical Engineering, 39, 541–557.

    Article  Google Scholar 

  5. Mosher, J.C., & Leahy, R.M. (1999). Source localization using recursively applied and projected (RAP) MUSIC. IEEE Transactions On Signal Processing, 47, 332–340.

    Article  Google Scholar 

  6. Van Veen, B.D., & Buckley, K. (1988). Beamforming: a versatile approach to spatial filtering. IEEE ASSP Magazine, 5, 4–24.

    Article  Google Scholar 

  7. Somersalo, E., Voutilainen, A., Kaipio, J.P. (2003). Non-stationary magnetoencephalography by Bayesian filtering of dipole models. Inverse Problems, 19, 1047–1063.

    Article  MathSciNet  MATH  Google Scholar 

  8. Campi, C., Pascarella, A., Sorrentino, A., Piana, M. (2008). A Rao-Blackwellized particle filter for magnetoencephalography. Inverse Problems and Imaging, 24, 25–23.

    MathSciNet  Google Scholar 

  9. Mohseni, H.R., Ghaderi, F., Wilding, E.L., Sanei, S. (2009). A beamforming particle filter for EEG dipole source localization. In IEEE international conference on acoustics, speech and signal processing (pp. 337–340).

  10. Pascarella, A., Sorrentino, A., Campi, C., Piana, M. (2010). Particle filtering, beamforming and multiple signal classification for the analysis of MEG time series: a comparison of algorithms. Inverse Problems and Imaging, 4, 169–190.

    Article  MathSciNet  MATH  Google Scholar 

  11. Sorrentino, A., Parkkonen, L., Pascarella, A., Campi, C., Piana, M. (2009). Dynamical MEG source modeling with multi-target Bayesian filtering. Human Brain Mapping, 30, 1911–1921.

    Article  Google Scholar 

  12. Pascarella, A., & Sorrentino, A. (2011). Statistical approaches to the inverse problem. In E.W. Pang (Ed.), Magnetoencephalography. InTech.

  13. Campi, C., Pascarella, A., Sorrentino, A., Piana, M. (2011). Highly Automated Dipole EStimation (HADES). Computational Intelligence and Neuroscience, 2011, article ID 982185.

  14. Galka, A., Yamashita, O., Ozaki, T., Biscay, R., Valde, P. (2004). A solution to the dynamical inverse problem of EEG generation using spatiotemporal Kalman filtering. NeuroImage, 23, 435–453.

    Article  Google Scholar 

  15. Antelis, J., & Minguez, J. (2009). Dynamic solution to the EEG source localization problem using Kalman filters and particle filters. In International conference of the IEEE engineering in medicine and biology society (pp. 77–80).

  16. Gordon, N.J., Salmon, D.J., Smith, A.F.M. (1992). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In IEE proceedings F: radar and signal processing (Vol. 140, pp. 107–113).

  17. Sorrentino, A., Parkkonen, L., Piana, M. (2007). Particle filters: a new method for reconstructing multiple current dipoles from MEG data. In International congress series (Vol. 1300, pp. 173–176).

  18. Mohseni, H.R., Wilding, E.L., Sanei, S. (2008). Sequential Monte Carlo techniques for EEG dipole placing and tracking. In Sensor array and multichannel signal processing workshop (pp. 95–98).

  19. Mahler, R. (2003). Multi-target Bayes filtering via first-order multi-target moments. IEEE Transactions on Aerospace and Electronic System, 39, 1152–1178.

    Article  Google Scholar 

  20. Vo, B.N., Singh, S., Doucet, A. (2003). Sequential Monte Carlo implementation of the PHD filter for multi-target tracking. In International conference of information fusion (Vol. 2, pp. 792–799).

  21. Hyvärinen, A., & Oja, E. (1997). A fast fixed-point algorithm for independent component analysis. Neural Computation, 9, 1483–1492.

    Article  Google Scholar 

  22. Casson, A.J., & Rodriguez-Villegas, E. (2007). Data reduction techniques to facilitate wireless and long term AEEG epilepsy monitoring. In IEEE EMBS conference on neural engineering (pp. 298–301).

  23. Casson, A.J., Smith, S., Duncan, J.S., Rodriguez-Villegas, E. (2008). Wearable EEG: what is it, why is it needed and what does it entail? In Engineering in medicine and biology society (pp. 5867–5870).

  24. Baillet, S., Mosher, J.C., Leahy, R.M. (2001). Electromagnetic brain mapping. IEEE Signal Processing Magazine, 18, 14–30.

    Article  Google Scholar 

  25. Mosher, J.C., Leahy, R.M., Lewis, P.S. (1999). EEG and MEG: forward solutions for inverse methods. IEEE Transactions in Biomedical Engineering, 46, 245–259.

    Article  Google Scholar 

  26. Daley, D.J., & Vere-Jones, D. (1997). An introduction to the theory of point processes (Vol. II: general theory and structure, 2nd Edn.) Springer-Verlag.

  27. Tobias, M., & Lanterman, A.D. (2005). Probability hypothesis density-based multi-target tracking with bistatic range and doppler observations. IEEE Radar, Sonar and Navigation, 152, 195–205.

    Article  Google Scholar 

  28. Clark, D.E., & Bell, J. (2005). Bayesian multiple target tracking in forward scan sonar images using the PHD filter. IEEE Radar, Sonar and Navigation, 152, 327–334.

    Article  Google Scholar 

  29. Chen, T., Liu, W., Chen, L. (2008). VLSI architecture of leading eigenvector generation for on-chip principal component analysis spike sorting system. In Engineering in medicine and biology society, 30th annual international conference of the IEEE (pp. 3192–3195).

  30. Cao, J., Murata, N., Amari, S., Cichocki, A., Takeda, T. (2002). Independent component analysis for unaveraged single-trial MEG data decomposition and single-dipole source localization. Neurocomputing, 49(1–4), 255–277.

    Article  Google Scholar 

  31. Verma, N., Shoeb, A., Bohorquez, J., Dawson, J., Guttag, J., Chandrakasan, A. (2010). A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE Journal of Solid-State Circuits, 45(4), 804–816.

    Article  Google Scholar 

  32. Chi, Y.M., Deiss, S., Cauwenberghs, G. (2009). Non-contact low power EEG/ECG electrode for high density wearable biopotential sensor networks. In Sixth international workshop on wearable and implantable body sensor networks (pp. 246–250).

  33. Zhou, W., Kovvali, N., Papandreou-Suppappola, A., Chattopadhyay, A. (2010). Sensor optimization for progressive damage diagnosis in complex structures. In Proc. of SPIE (Vol. 7650, pp. 1–10).

  34. Chhetri, A., Morrell, D., Papandreou-Suppappola, A. (2006). Sensor scheduling using a 0-1 mixed integer programming framework. In Fourth IEEE workshop on sensor array and multichannel processing (pp. 471–475).

  35. Welch, W. (1982). Branch-and-bound search for experimental designs based on D-optimality and other criteria. Technometrics, 24, 41–48.

    MathSciNet  MATH  Google Scholar 

  36. Joshi, S., & Boyd, S. (2009). Sensor selection via convex optimization. IEEE Transaction on Signal Processing, 57, 451–462.

    Article  MathSciNet  Google Scholar 

  37. Fujio, S., Shiomi, H., Okamura, Y. (2010). Acceleration of FPGA-based ICA processor for real-time processing. In International symposium on antennas and propagation (pp. 1–4).

  38. Miao, L., Zhang, J.J., Chakrabarti, C., Papandreou-Suppappola, A. (2010). Multiple sensor sequential tracking of neural activity with FPGA implementation. In Asilomar conference on signals, systems and computers, pacific grove, CA (pp. 369–373).

  39. Chakrabarti, C. (1994). High sample rate array architecture for median filters. IEEE Transaction on Signal Processing, 57, 707–712.

    Article  Google Scholar 

  40. Shindo, K., Ikeda, A., Musha, T., Terada, K., Fukuyama, H., Taki, W., Kimura, J., Shibasaki, H. (1998). Clinical usefulness of the dipole tracing method for localizing interictal spikes in partial epilepsy. Epilepsia, 39, 371–379.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Miao.

Additional information

This work was supported by the National Science Foundation under Grant No. 0830799.

The real-time estimation of an unknown number of neural sources was discussed in our 2011 IEEE Workshop on Signal Processing Systems paper [1]. In addition, this work presents the probability hypothesis density filter implemented using particle filtering with a new pre-whitening processing algorithm (Section 4); a sensor scheduling algorithm (Section 5) and its hardware implementation (Section 6.2); performance results to demonstrate sensor scheduling for simulated EEG data (Section 7.1); new hardware implementation results with sensor scheduling (Section 7.2); and scalability analysis (Section 7.3).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, L., Michael, S., Kovvali, N. et al. Multi-source Neural Activity Estimation and Sensor Scheduling: Algorithms and Hardware Implementation. J Sign Process Syst 70, 145–162 (2013). https://doi.org/10.1007/s11265-012-0701-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-012-0701-7

Keywords