Skip to main content
Log in

Utilization of Pipeline Technique in AOP Based Multipliers with Parallel Inputs

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Heretofore many All-One-Polynomials (AOP) based multipliers are proposed over GF(2m). Previously proposed multipliers have serial input structure and also suffer from a long critical path delay. In this paper we improve AOP based multipliers by reducing the critical path delay and changing the input structure to parallel. Initially, we modify the wiring of the previously proposed AOP based multipliers. This approach reduces the critical path delay from O(m) to O(log m). In order to further reduce this delay from O(log m) to O(1) the pipeline technique is utilized. The efficiency of the proposed architectures is evaluated based on criteria of time (latency, critical path) and space complexity (gate-latch number).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Menezes, A. J., van Oorschot, P. C., & Vanstone, S. A. (1997). Handbook of applied cryptography. Boca Raton: CRC Press.

    MATH  Google Scholar 

  2. Miller, V.S. (1986). Uses of elliptic curves in cryptography. In H. C. Williams, (Ed.), Advances in Cryptology – CRYPTO ’85, volume 218 of LNCS, (pp 417–428). Springer.

  3. Kim, H. S., & Lee, S. W. (2007). LFSR multipliers over GF(2 m) defined by all-one polynomial. Integration, the VLSI Journal, 40(4), 473–478.

    Article  Google Scholar 

  4. Nikooghadam, M., Zakerolhosseini, A., & Ebrahimi Moghaddam, M. (2010). Efficient utilization of elliptic curve cryptosystem for hierarchical access control. Journal of System and Software, 83(10), 1917–1929.

    Article  Google Scholar 

  5. Nikooghadam, M., & Zakerolhosseini, A. (2009). An efficient blind signature scheme based on the elliptic curve discrete logarithm problem. The ISC Int’l Journal of Information Security, 1(2), 125–131.

    Google Scholar 

  6. Nikooghadam, M., Safaei, F., Zakerolhosseini, A. (2010). An efficient key management scheme for mobile agents in distributed networks, 1st International Conference on Parallel, Distributed and Grid Computing, IEEE, (PDGC), 32, 28–30.

  7. McEliece, R. J. (1987). Finite fields for computer scientists and engineers. New York: Kluwer Academic Publishers.

    Book  MATH  Google Scholar 

  8. Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of Computation, 48(177), 203–209.

    Article  MathSciNet  MATH  Google Scholar 

  9. Nandi, S., Kar, B. K., & Chaudhuri, P. P. (1994). Theory and applications of cellular automata in cryptography. IEEE Transaction on Computers, 43(12), 1346–1357.

    Article  Google Scholar 

  10. Mastrovito, E.D. (1991). VLSI architectures for computations in galois fields, Phd Thesis, Linkoping University.

  11. Shparlinski, I.E. (1999). Finite fields: theory and computation. Kluwer Academic Publishers.

  12. García-Martínez, M.A., Posada-Gómez, R., Luna, G.M. (2005). FPGA Implementation of an Efficient Multiplier over Finite Fields GF(2m). IEEE Proc. of the 2005 Int. Conf. on Reconfigurable Comput. and FPGAs. 68–82.

  13. Kitsos, P., Theodoridis, G., & Koufopavlou, O. (2003). An efficient reconfigurable multiplier architecture for Galois field GF(2m). Microelectronics Journal, 34(10), 975–980.

    Article  Google Scholar 

  14. Koc, C. K., & Sunar, B. (1998). Low-complexity bit-parallel canonical and normal basis multipliers for a class of finite fields. IEEE Transaction on Computers, 47(3), 353–356.

    Article  MathSciNet  MATH  Google Scholar 

  15. Selimis, G. N., Fournaris, A. P., Michail, H. E., & Koufopavlou, O. (2009). Improved throughput bit-serial multiplier for GF(2m) fields. Integration, the VLSI Journal, 42(2), 217–226.

    Article  Google Scholar 

  16. Zakerolhosseini, A., Nikooghadam, M. (2012). Low-power and high-speed design of a versatile bit-serial multiplier in finite fields GF(2m), NTEGRATION ,the VLSI journal, http://dx.doi.org/10.1016/j.vlsi.2012.03.001

  17. Li, H., & Zhang, C. N. (2002). Efficient cellular automata based versatile multiplier for GF(2m). Journal of Information Science and Engineering, 18(4), 479–488.

    Google Scholar 

  18. Talapatra, S., Rahaman, H., & Mathew, J. (2010). Low complexity digit serial systolic Montgomery multipliers for special class of GF(2m). IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 18(5), 847–852.

    Article  Google Scholar 

  19. Jeon, J. C., Kim, H. S., Lee, H. M., & Yoo, K. Y. (2002). Bit-serial AB2 multiplier using modified inner product. Journal of Information Science and Engineering, 18(4), 507–518.

    Google Scholar 

  20. Jeon, J. C., Kim, K. W., & Yoo, K. Y. (2006). A novel approach for bit-serial AB 2 multiplication in finite fields GF(2m). Computers & Mathematics with Applications, 51(6–7), 1103–1112.

    Article  MathSciNet  MATH  Google Scholar 

  21. Fenn, S. T. J., Parker, M. G., Benaissa, M., & Tayler, D. (1997). Bit-serial multiplication in GF(2m) using irreducible all-one polynomial. IEE Proceedings - Computers and Digital Techniques, 144(6), 391–393.

    Article  Google Scholar 

  22. Kim, H. S., & Yoo, K. Y. (2004). AOP arithmetic architectures over GF(2m). Applied Mathematics and Computation, 158(1), 7–18.

    Article  MathSciNet  MATH  Google Scholar 

  23. Hwang, Y.H., Sim, S.G., Lee, P.J. (2004). Bit-serial Multipliers for Exponentiation and Division in GF(2m) using Irreducible AOP, ICCSA, 442–450, Springer

  24. Itoh, T., & Tsujii, S. (1989). Structure of parallel multipliers for a class of fields GF(2 m). Information and Computation, 83(1), 21–40.

    Article  MathSciNet  MATH  Google Scholar 

  25. Rodriguez-Henriquez, F., & Koc, C. K. (2003). Parallel multipliers based on special irreducible pentanomials. IEEE Transactions on Computers, 52(12), 1533–1542.

    Article  Google Scholar 

  26. Sunar, B., & Koc, C. K. (1999). Mastrovito multiplier for all trinomials. IEEE Transactions on Computers, 48(5), 522–527.

    Article  MathSciNet  MATH  Google Scholar 

  27. Song, L., & Parhi, K. (1998). Low-energy digit-serial/parallel finite field multipliers. Journal of VLSI Signal Processing, 19(2), 149–166.

    Article  Google Scholar 

  28. Fournaris, A. P., & Koufopavlou, O. (2008). Versatile multiplier architectures in GF(2k) fields using the Montgomery multiplication algorithm. Integration, the VLSI Journal, 41(3), 371–384.

    Article  Google Scholar 

  29. Hutter, M., Großschadl, J., Kamendje, G. (2003). A versatile and scalable digit-serial/parallel multiplier architecture for finite fields GF(2m). IEEE Proc. of the 4th Int. Conf. on Inform. Technology: Coding and Computing, 692–700.

  30. Wang, C. L., & Lin, J. L. (1991). Systolic array implementation of multipliers for finite fields GF(2m)”. IEEE Transactions on Circuits and Systems, 38(7), 796–800.

    Article  Google Scholar 

  31. Tsai, W. C., & Wang, S. J. (2000). Two systolic architectures for multiplication in GF(2m). IEE Proceedings - Computers and Digital Techniques, 147(6), 375–382.

    Article  Google Scholar 

  32. Guo, J. H., & Wang, C. L. (1998). Digit-serial systolic multiplier for finite fields GF(2m). IEE Proceedings - Computers and Digital Techniques, 145(2), 143–148.

    Article  Google Scholar 

  33. Lee, C. Y., Lu, E. H., & Lee, J. Y. (2001). Bit-parallel systolic multipliers for GF(2m) fields defined by all-one and equally spaced polynomials. IEEE Transaction on Computers, 50(5), 385–393.

    Article  MathSciNet  Google Scholar 

  34. Sudhakar, M., Kamala, R.V., Srinivas, M.B. (2007). A Unified, Reconfigurable Architecture for Montgomery Multiplication in Finite Fields GF(p) and GF(2n), 20th Int. Conf. on VLSI Design (VLSID’07), 68–82.

  35. Morales-Sandoval, M., Feregrino-Uribe, C., & Kitsos, P. (2011). Bit-serial and digit-serial GF(2 m)Montgomery multipliers using linear feedback shift registers. Computers & Digital Techniques, IET, 5(2), 86–94.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Nikooghadam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikooghadam, M., Zakerolhosseini, A. Utilization of Pipeline Technique in AOP Based Multipliers with Parallel Inputs. J Sign Process Syst 72, 57–62 (2013). https://doi.org/10.1007/s11265-012-0702-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-012-0702-6

Keywords

Navigation