Skip to main content

Advertisement

Log in

Thermal Modeling of Hybrid Storage Clusters

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

There is a lack of thermal models for storage clusters; most existing thermal models do not take into account the utilization of hard drives (HDDs) and solid state disks (SSDs). To address this problem, we build a thermal model for hybrid storage clusters that are comprised of HDDs and SSDs. We start this study by generating the thermal profiles of hard drives and solid state disks. The profiling results show that both HDDs and SSDs have profound impacts on temperatures of storage nodes in a cluster. Next, we build two types of hybrid storage clusters, namely, inter-node and intra-node hybrid storage clusters. We develop a model to estimate the cooling cost of a storage cluster equipped with hybrid storage nodes. The thermal model is validated against data acquired by temperature sensors. Experimental results show that, compared to the HDD-first strategy, the SSD-first strategy is an efficient approach to minimize negative thermal impacts of hybrid storage clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  1. Intel ssd sa2m080g2gc. http://download.intel.com/newsroom/kits/ssd/pdfs/X25-M_34nm_DataSheet.pdf.

  2. lm-sensors. http://www.lm-sensors.org/.

  3. Minigooseii. http://www.itwatchdogs.com/datasheets/MiniGoose_II_User_Manual_v1_05.pdf.

  4. stress-1.0.1. http://weather.ou.edu/apw/projects/stress/.

  5. Wd1600aajs specification. http://www.wdc.com/wdproducts/library/SpecSheet/ENG/2879-.701277.pdf.

  6. U.S. Environmental Protection Agency (2007). Report to congress on server and data center energy efficiency. Technical report.

  7. Allalouf, M., Arbitman, Y., Factor, M., Kat, R.I., Meth, K., Naor, D. (2009). Storage modeling for power estimation. In Proceedings of SYSTOR 2009: the Israeli experimental systems conference, SYSTOR ’09 (pp. 3:1–3:10). New York. ACM.

    Chapter  Google Scholar 

  8. Bieswanger H.F.H.A., & Wehle H.-D. (2012). Energy efficient data center. Technical Report 1.

  9. Ayoub R.Z., Indukuri K.R., Rosing T.S. (2010). Energy efficient proactive thermal management in memory subsystem. In Proceedings of the 16th ACM/IEEE international symposium on low power electronics and design, ISLPED ’10 (pp. 195–200). New York: ACM.

  10. Balakrishnan M., Kadav A., Prabhakaran V., Malkhi D. (2010). Differential raid: rethinking raid for ssd reliability. Transactions Storage , 6(2), 4:1–4:22.

    Google Scholar 

  11. Barroso L.A., & Hölzle U. (2007). The case for energy-proportional computing. Computer , 40(12), 33–37.

    Article  Google Scholar 

  12. Brown D.J., & Reams C. (2010). Toward energy-efficient computing. Communications of the ACM , 53(3), 50–58.

    Article  Google Scholar 

  13. Chang L.-P. (2008). Hybrid solid-state disks: Combining heterogeneous nand flash in large ssds. In Proceedings of the 2008 Asia and South Pacific design automation conference, ASP-DAC ’08 (pp. 428–433). Los Alamitos: IEEE Computer Society Press.

    Chapter  Google Scholar 

  14. Chen F., Koufaty D.A., Zhang X. (2011). Hystor: Making the best use of solid state drives in high performance storage systems. In Proceedings of the international conference on supercomputing, ICS ’11 (pp. 22–32). New York: ACM.

    Google Scholar 

  15. Colarelli D., & Grunwald D. (2002). Massive arrays of idle disks for storage archives. In Proceedings of the 2002 ACM/IEEE conference on supercomputing, supercomputing ’02 (pp. 1–11). Los Alamitos: IEEE Computer Society Press.

    Google Scholar 

  16. Eibeck P.A., & Cohen D.J. (1988). Modeling thermal characteristics of a fixed disk drive. IEEE Transactions on Components, Hybrids, and Manufacturing Technology , 11(4), 566–570.

    Article  Google Scholar 

  17. El-Sayed N., Stefanovici I.A., Amvrosiadis G., Hwang A.A., Schroeder B. (2012). Temperature management in data centers: why some (might) like it hot. SIGMETRICS Performance Evaluation Review , 40(1), 163–174.

    Article  Google Scholar 

  18. Guerra J., Belluomini W., Glider J., Gupta K., Pucha H. (2010). Energy proportionality for storage: impact and feasibility. SIGOPS Operations Systematics Review , 44(1), 35–39.

    Article  Google Scholar 

  19. Gurumurthi S., Sivasubramaniam A., Natarajan V.K. (2005). Disk drive roadmap from the thermal perspective: a case for dynamic thermal management. SIGARCH Computer Architecture News , 33(2), 38–49.

    Article  Google Scholar 

  20. Datacenter Dynamics (2011). Global data center energy demand forecasting. http://www.dcd-intelligence.com/Census-2013/Key-Findings-2011-12. Technical report.

  21. Jiang X., Alghamdi M.I., Ji Z., Assaf M.A., Xiaojun R., Muzaffar T., Qin X. (2012). Thermal modeling and analysis of storage systems. In Performance computing and communications conference (IPCCC) 2012 IEEE 31st international (pp. 31–40).

  22. Katcher J. (1997). Postmark: a new file system benchmark. System , 3022, 1–8.

    Google Scholar 

  23. Kim Y., Gurumurthi S., Sivasubramaniam A. (2006). Understanding the performance-temperature interactions in disk i/o of server workloads. In high-performance computer architecture, 2006. The twelfth international symposium on (pp. 176–186).

  24. Koomey J.G. (2007). Estimating total power consumption by servers in the U.S. and the world. Technical report, Lawrence Derkley National Laboratory.

  25. Li L., Liang C.-J.M., Liu J., Nath S., Terzis A., Faloutsos C. (2011). Thermocast: a cyber-physical forecasting model for datacenters. In Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’11 (pp. 1370–1378). New York: ACM.

  26. Mao B., Jiang H., Wu S., Tian L., Feng D., Chen J., Zeng L. (2012). Hpda: a hybrid parity-based disk array for enhanced performance and reliability. Trans Storage , 8(1), 4:1–4:20.

    Article  Google Scholar 

  27. Moore J., Chase J., Ranganathan P., Sharma R. (2005). Making scheduling ”cool”: temperature-aware workload placement in data centers. In Proceedings of the annual conference on USENIX annual technical conference, ATEC ’05 (pp. 5–5). Berkeley: USENIX Association.

    Google Scholar 

  28. Pavlo A., Paulson E., Rasin A., Abadi D.J., DeWitt D.J., Madden S., Stonebraker M. (2009). A comparison of approaches to large-scale data analysis. In Proceedings of the 2009 ACM SIGMOD international conference on management of data, SIGMOD ’09 (pp. 165–178). New York: ACM.

    Google Scholar 

  29. Pinheiro E., & Bianchini R. (2004). Energy conservation techniques for disk array-based servers. In Proceedings of the 18th annual international conference on supercomputing, ICS ’04 (pp. 68–78). New York: ACM.

    Chapter  Google Scholar 

  30. Pinheiro E., Weber W.-D., Barroso L.A. (2007). Failure trends in a large disk drive population. In Proceedings of the 5th USENIX conference on file and storage technologies (pp. 2–2). Berkeley: USENIX Association.

    Google Scholar 

  31. Sarood O., Gupta A., Kale L.V. (2011). Temperature aware load balancing for parallel applications: Preliminary work. In parallel and distributed processing workshops and phd forum (IPDPSW), 2011 IEEE international symposium on (pp. 796 –803).

  32. Sarood O., & Kale L.V. (2011). A ’cool’ load balancer for parallel applications. In Proceedings of 2011 international conference for high performance computing, networking, storage and analysis, SC ’11 (pp. 21:1–21:11). New York: ACM.

    Google Scholar 

  33. Schall D., Hudlet V., Härder T. (2010). Enhancing energy efficiency of database applications using ssds. In Proceedings of the third C* conference on computer science and software engineering, C3S2E ’10 (pp. 1–9). New York: ACM.

    Chapter  Google Scholar 

  34. Sharma R.K., Bash C.E., Patel C.D., Friedrich R.J., Chase J.S. (2005). Balance of power: dynamic thermal management for internet data centers. IEEE Internet Computing , 9(1), 42–49.

    Article  Google Scholar 

  35. Tan C.P.H., Yang J.P., Mou J.Q., Ong E.H. (2009). Three dimensional finite element model for transient temperature prediction in hard disk drive. In Magnetic recording conference, 2009. APMRC’09, Asia-Pacific (pp. 1–2).

  36. Tang Q., Gupta S., Varsamopoulos G. (2007). Thermal-aware task scheduling for data centers through minimizing heat recirculation. In Cluster computing, 2007 IEEE international conference on (pp. 129–138).

  37. Tang Q., Gupta S., Varsamopoulos G. (2007). Thermal-aware task scheduling for data centers through minimizing heat recirculation. In Cluster computing, 2007 IEEE international conference on (pp. 129–138).

  38. Tang Q., Gupta S.K.S., Varsamopoulos G. (2008). Energy-efficient thermal-aware task scheduling for homogeneous high-performance computing data centers: a cyber-physical approach. IEEE Trans Parallel Distribution Systems , 19(11), 1458–1472.

    Article  Google Scholar 

  39. Vasic N., Scherer T., Schott W. (2010). Thermal-aware workload scheduling for energy efficient data centers. In Proceedings of the 7th international conference on Autonomic computing, ICAC ’10 (pp. 169–174). New York: ACM.

    Chapter  Google Scholar 

  40. Wu G., Xubin H., Eckart B. (2012). An adaptive write buffer management scheme for flash-based ssds. Trans Storage , 8(1), 1:1–1:24.

    Article  Google Scholar 

  41. Xie T., & Sun Y. (2011). Understanding the relationship between energy conservation and reliability in parallel disk arrays. Journal of Parallel Distribution Computation , 71, 198–210.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the U.S. National Science Foundation under Grants CCF-0845257 (CAREER), CNS-0917137 (CSR), CNS-0757778 (CSR), CCF-0742187 (CPA), CNS-0831502 (CyberTrust), CNS-0855251 (CRI), OCI-0753305 (CI-TEAM), DUE-0837341 (CCLI), and DUE-0830831 (SFS). Mohammed Alghamdi’s research was supported by AL-Baha University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xunfei Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X., Al Assaf, M.M., Zhang, J. et al. Thermal Modeling of Hybrid Storage Clusters. J Sign Process Syst 72, 181–196 (2013). https://doi.org/10.1007/s11265-013-0787-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-013-0787-6

Keywords