Skip to main content
Log in

Interference-Robust Air Interface for 5G Ultra-dense Small Cells

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

An ultra-dense deployment of small cells is foreseen as the solution to cope with the exponential increase of the data rate demand targeted by the 5th Generation (5G) radio access technology. In this article, we propose an interference-robust air interface built upon the usage of advanced receivers as main interference mitigation technique. Both Interference Rejection Combining (IRC) and Successive Interference Cancellation (SIC) principles are considered. An efficient usage of such receivers is ensured by a proper frame structure design and system assumptions. Different approaches for the rank adaptation are also investigated. Simulation results show that proposed air interface built upon advanced receiver can be a feasible alternative to traditional solutions based on frequency reuse planning. Open issues and further challenges are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. 3GPP TR 36.814: Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA physical layer aspects (2010). http://www.3gpp.org. v9.0.0.

  2. 3GPP TR 36.829: Enhanced performance requirement for LTE User Equipment (UE) (2013). http://www.3gpp.org. v11.1.0.

  3. 3GPP TR 36.866: Study on Network-Assisted Interference Cancellation and Suppression (NAIC) for LTE (2014). http://www.3gpp.org. v12.0.1.

  4. 3GPP TS 36.211: Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (2012). http://www.3gpp.org. v11.1.0.

  5. Kyösti P., & et al. WINNER II Channel Models. D1.1.2 v1.1, IST-WINNER (2007). https://www.ist-winner.org/WINNER2-Deliverables/D1.1.2v1.1.pdf.

  6. Berardinelli, G., Tavares, F., Mahmood, N., Tonelli, O., Cattoni, A., Sørensen, T., & Mogensen, P. (2013). Distributed synchronization for beyond 4G indoor femtocells. In 20Th international conference on telecommunications (ICT) (pp. 1–5).

  7. Berardinelli, G., Tavares, F.M., Tirkkonen, O., Sørensen, T.B., & Mogensen, P. (2014). Distributed initial synchronization for 5G small cells. In 79th IEEE Vehicular Technology Conference (VTC Spring). doi:10.1109/VTCSpring.2014.7022884 (pp. 1–5).

  8. Boudreau, G., Panicker, J., Guo, N., Chang, R., Wang, N., & Vrzic, S. (2009). Interference coordination and cancellation for 4G networks. IEEE Communications Magazine, 47(4), 74–81.

    Article  Google Scholar 

  9. Catania, D., Cattoni, A.F., Mahmood, N.H., Berardinelli, G., Frederiksen, F., & Mogensen, P. (2015). A distributed taxation based rank adaptation scheme for 5G small cells. In 81St IEEE vehicular technology conference (VTC Spring).

  10. Catania, D., Sarret, M., Cattoni, A., Frederiksen, F., Berardinelli, G., & Mogensen, P. (2014). The potential of Flexible UL/DL Slot Assignment in 5G Systems. In 80Th IEEE vehicular technology conference (VTC Fall), (pp. 1–6).

  11. Chandrasekhar, V., Andrews, J., & Gatherer, A. (2008). Femtocell networks: a survey. Communications Magazine, IEEE, 46(9), 59–67. doi:10.1109/MCOM.2008.4623708.

    Article  Google Scholar 

  12. Choi, J. (2010). Optimal combining and detection: Statistical signal processing for communications. Cambridge, UK: Cambridge University Press.

    Book  MATH  Google Scholar 

  13. da Costa, G., Cattoni, A., Kovacs, I., & Mogensen, P. (2010). A scalable spectrum-sharing mechanism for local area network deployment. IEEE Transactions on Vehicular Technology, 59(4), 1630–1645.

    Article  Google Scholar 

  14. Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., Yoo, T., Song, O., & Malladi, D. (2011). A survey on 3GPP heterogeneous networks. IEEE Wireless Communications, 18(3), 10–21.

    Article  Google Scholar 

  15. Garcia, L., Kovacs, I., Pedersen, K., Costa, G.W.O., & Mogensen, P. (2012). Autonomous component carrier selection for 4G femtocells - a fresh look at an old problem. IEEE Journal on Selected Areas in Communications, 30(3), 525–537.

    Article  Google Scholar 

  16. Karlsson, J., & Heinegard, J. (1996). Interference rejection combining for GSM. In 5Th IEEE international conference on universal personal communications, (Vol. 1 pp. 433–437).

  17. Lampinen, M., Del Carpio, F., Kuosmanen, T., Koivisto, T., & Enescu, M. (2012). System-level modeling and evaluation of interference suppression receivers in LTE system. In 75Th IEEE vehicular technology conference (VTC Spring) (pp. 1–5).

  18. Mahmood, N., Berardinelli, G., Tavares, F., & Mogensen, P. (2014). A distributed interference-aware rank adaptation algorithm for local area MIMO systems with MMSE receivers. In 11Th international symposium on wireless communications systems (ISWCS) (pp. 697–701).

  19. Mogensen, P., Pajukoski, K., Raaf, B., Tiirola, E., Lähetkangas, E., Kovács, I.Z., Berardinelli, G., Garcia, L.G.U., Hu, L., & Cattoni, A.F. (2012). B4g local area: High level requirements and system design. In IEEE Globecom workshops (pp. 613–617).

  20. Mogensen, P., Pajukoski, K., Tiirola, E., Vihriälä, J., Lähetkangas, E., Berardinelli, G., Tavares, F.M.L., Mahmood, N.H., Lauridsen, M., Catania, D., & Cattoni, A.F. (2014). Centimeter-wave concept for 5G ultra-dense small cells. In 79Th IEEE vehicular technology conference (VTC Spring).

  21. Ohwatari, Y., Miki, N., Asai, T., Abe, T., & Taoka, H. (2011). Performance of advanced receiver employing interference rejection combining to suppress inter-cell interference in LTE-advanced downlink. In IEEE vehicular technology conference (VTC Fall) (pp. 1–7).

  22. Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., Queseth, O., Schellmann, M., Schotten, H., Taoka, H., Tullberg, H., Uusitalo, M., Timus, B., & Fallgren, M. (2014). Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35.

    Article  Google Scholar 

  23. Patel, P., & Holtzman, J. (1994). Analysis of a simple successive interference cancellation scheme in a DS/CDMA system. IEEE Journal on Selected Areas in Communications, 12(5), 796–807.

    Article  Google Scholar 

  24. Soret, B., Wang, Y., & Pedersen, K. (2012). CRS Interference cancellation in heterogeneous networks for LTE-advanced downlink. In IEEE international conference on communications (ICC) (pp. 6797–6801).

  25. Tavares, F., Berardinelli, G., Mahmood, N., Sørensen, T., & Mogensen, P. (2013). On the potential of interference rejection combining in B4G networks. In 78Th IEEE vehicular technology conference (VTC Fall) (pp. 1–5).

  26. Tavares, F., Berardinelli, G., Mahmood, N., Sørensen, T., & Mogensen, P. (2014). Inter-cell interference management using Maximum Rank Planning in 5G small cell networks. In 11Th international symposium on wireless communications systems (ISWCS) (pp. 628–632).

  27. Verdu, S. (1998). Multiuser Detection, 1st edn. New York, USA: Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando M. L. Tavares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

L. Tavares, F.M., Berardinelli, G., Mahmood, N.H. et al. Interference-Robust Air Interface for 5G Ultra-dense Small Cells. J Sign Process Syst 83, 265–278 (2016). https://doi.org/10.1007/s11265-015-1060-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-015-1060-y

Keywords

Navigation