Skip to main content

Advertisement

Log in

Block-Matching Correlation Motion Estimation for Frame-Rate up-Conversion

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This paper proposes a novel motion estimation algorithm that combines recursive block-matching and customized phase plane correlation. In comparison with alternative approaches the proposed solution shows better subjective impressions and objective measurements, such as Peak Signal to Noise Ratio and Universal Image Quality Index. Computational complexity of the algorithm is constrained and suitable for real-time implementations on platforms with limited memory and processing resources. The proof of concept is the first real-time implementation of frame-rate up-conversion on a mobile platform (Intel Merrifield), which is capable of processing 1080p video at 30 frames per second while clocked at 200 MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cordes, C. N., & de Haan, G. (2009). Key requirements for high quality picture-rate conversion. SID Symposium Digest of Technical Papers, 41(1), 850–853.

    Article  Google Scholar 

  2. Xu, L., Jia, J., Matsushita, Y. (2010). Motion detail preserving optical flow estimation, Computer Vision and Pattern Recognition (CVPR), 2010 I.E. Conference on, San Francisco, CA, USA, 1293–1300

  3. Li, R., Zeng, B., & Liou, M. L. (1994). A new three-step search algorithm for block motion estimation. Circuits and Systems for Video Technology, IEEE Transactions, 4(4), 438–442.

    Article  Google Scholar 

  4. Zhu, S., & Ma, K. K. (2000). A new diamond search algorithm for fast block-matching motion estimation. Image Processing IEEE Transactions on, 9(2), 287–290.

    Article  MathSciNet  Google Scholar 

  5. de Haan, G., Biezen, P. W. A. C., Huijgen, H., & Ojo, O. A. (1993). True motion estimation with 3-D recursive search block-matching. IEEE Tr. on Circuits and Systems for Video Technology, 3(5), 368–388.

    Article  Google Scholar 

  6. de Haan, G., & Biezen, P. W. A. C. (1994). Sub-pixel motion estimation with 3-D recursive search block-matching. Signal Processing: Image Communication, 6(3), 229–239.

    Article  Google Scholar 

  7. Tourapis, A. M., Au, O. C., & Liou, M. L. (2001). Predictive motion vector field adaptive search technique (pmvfast) - enhancing block based motion estimation, SPIE Proceedings Vol. Visual Communications and Image Processing, 4310, 883–892.

    Google Scholar 

  8. Nie, Y., & Ma, K. K. (2002). Adaptive rood pattern search for fast block-matching motion estimation. Image Processing IEEE Transactions, 11(12), 1442–1449.

    Article  Google Scholar 

  9. Tedmori, S., & Al-Najdawi, N. (2012). Hierarchical stochastic fast search motion estimation algorithm. IET Computer Vision, 6(1), 21–28.

    Article  MathSciNet  Google Scholar 

  10. Zhang, P., Wei, P., & Yu, H.-Y. (2012). Biogeography-based optimisation search algorithm for block matching motion estimation. IET Image Processing, 6(7), 1014–1023.

    Article  MathSciNet  Google Scholar 

  11. Biswas, M., & Nguyen, T. Q. (2002). A novel motion estimation algorithm using phase plane correlation for frame rate conversion, signals, systems and computers, 2002 (pp. 492–496). Pacific Grove: Conference Record of the Thirty-Sixth Asilomar Conference on.

    Google Scholar 

  12. Kumar, S., Biswas, M., & Nguyen, T. Q. (2004). Efficient phase correlation motion estimation using approximate normalization, Signals, Systems and Computers (pp. 1727–1730). Pacific Grove: Conference Record of the Thirty-Eighth Asilomar Conference on.

    Google Scholar 

  13. Research department report, the British Broadcasting Corporation (1990). Real-time motion measurement hardware: Phase correlation unit, , 1–19.

  14. Huang, A.-M., & Nguyen, T. (2009). Correlation-based motion vector processing with adaptive interpolation scheme for motion-compensated frame interpolation. Image Processing IEEE Transactions on, 18(4), 740–752.

    Article  MathSciNet  Google Scholar 

  15. Sorwar, G., Murshed, M., & Dooley, L. (2004). Fast block-based true motion estimation using distance dependent thresholds. Journal of Research and Practice in Information Technology, 36(3), 157–169.

    Google Scholar 

  16. Wang, D., & Vincent, L. Z. (2010). A Motion-Compensated Frame Rate Up-Conversion - Part I: Fast Multi-Frame Motion Estimation. Broadcasting IEEE Transactions on, 56(2), 133–141.

    Article  Google Scholar 

  17. Ho, H., Klepko, R., Ninh, N., & Wang, D. (2011). A high performance hardware architecture for multi-frame hierarchical motion estimation. Consumer Electronics IEEE Transactions on, 57(2), 794–801.

    Article  Google Scholar 

  18. Lee, W. H., Choi, K., & Ra, J. B. (2014). Frame rate Up conversion based on variational image fusion, image processing. IEEE Transactions on, 23(1), 399–412.

    MathSciNet  Google Scholar 

  19. T. Brox, A. Bruhn, N. Papenberg, J. Weickert, (2004). High accuracy optical flow estimation based on a theory for warping, inProc. 8th Eur. Conf. Comput. Vis., vol. 4. 25–36.

  20. Ndili, O., & Ogunfunmi, T. (2014). Fast algorithm and efficient architecture for integer and fractional motion estimation. Journal of Signal Processing Systems, 75(1), 55–64.

    Article  Google Scholar 

  21. Wang, D., Vincent, A., Blanchfield, P., & Klepko, R. (2010). Motion-compensated frame rate Up-conversion - part II: New algorithms for frame interpolation. Broadcasting IEEE Transactions, 56(2), 142–149.

    Article  Google Scholar 

  22. Yoo, D., Kang, S., & Kim, Y. H. (2013). Direction-Select Motion Estimation for Motion-Compensated Frame Rate Up-Conversion, 9(10), 840–850.

    Google Scholar 

  23. Quang, T. V., Kim, Y., & Hong, S. (2009). Frame rate up-conversion using forward-backward jointing motion estimation and spatio-temporal motion vector smoothing, Computer Engineering & Systems, ICCES 2009 (pp. 605–609). Cairo: International Conference on.

    Google Scholar 

  24. Ojo, O. A., & de Haan, G. (1997). Robust motion-compensated video upconversion’. Consumer Electronics IEEE Transactions on, 43(4), 1045–1056.

    Article  Google Scholar 

  25. Test video sequences and frame rate up-conversion results, http://1drv.ms/1lTCEp7, accessed December 2014

  26. Wang, Z., & Bovik, A. C. (2002). A universal image quality index. Signal Processing Letters IEEE, 9(3), 81–84.

    Article  Google Scholar 

  27. Jakovljević, R., Berić, A., van Dalen, E., & Milićev, D. (2014). New access modes of parallel memory subsystem for sub-pixel motion estimation. Journal of Real-Time Image Processing, 1–18.

  28. Pinto, C. A., & Beric, A. (2006). HiveFlex-video VSP1: video signal processing architecture for video coding and post-processing, ISM'06 (pp. 493–500). San Diego: Eighth IEEE International Symposium on.

    Google Scholar 

  29. Berić, A., de Haan, G., Sethuraman, R., & van Meerbergen, J. (2005). An efficient picture-rate Up-converter. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 41(1), 49–63.

    Article  Google Scholar 

  30. Beric, A., Pantic, Z., Kovacevic, V.: ‘Motion estimation using hierarchical Phase Plane Correlation and Block Matching’. US Patent Application Number: 2014/0254678 A1, September 2014.

Download references

Acknowledgments

The work was supported by the Intel Corporation which provided simulator and prototype of Intel Merrifield mobile platform on which the described algorithm was implemented and run in a real-time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir B. Kovačević.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovačević, V.B., Pantić, Z., Berić, A. et al. Block-Matching Correlation Motion Estimation for Frame-Rate up-Conversion. J Sign Process Syst 84, 283–292 (2016). https://doi.org/10.1007/s11265-015-1063-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-015-1063-8

Keywords

Navigation