Abstract
A novel ultra high-throughput detection algorithm with an efficient VLSI architecture for high-order MIMO detectors in the complex constellations is proposed. The main contributions include a new method for the node generation in complex-domain, pipelinable sorters, and a simple combinational circuit instead of the conventional multipliers, which makes the proposed architecture multiplication-free. The proposed design achieves an SNR-independent throughput of 13.3 Gbps at the clock frequency of 556 MHz in a 0.13 μm CMOS technology with a near ML performance. The implemented design consumes 90 pJ per detected bit with the initial latency of 0.3 μs. Also, the synthesis results in a 90 nm CMOS technology prove that the proposed design can achieve the throughput of 20 Gbps. Moreover, an FPGA platform was developed using a Xilinx ML605 Evaluation board, demonstrating a sustained throughput of 3.3 Gbps at 140 MHz clock frequency. As an important feature, the proposed architecture can easily be extended to higher-order constellations and can be tailored for low-power/lower-area applications at the expense of a lower detection throughput. “A less efficient flavor of the algorithm presented in this paper, was presented in part in [10]. The proposed design in this paper has improved significantly in terms of the proposed algorithm, architecture, the basic blocks, and the final implementation results while presenting comprehensive complexity analysis of the proposed method.”
Access this article
Rent this article via DeepDyve
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11265-016-1145-2/MediaObjects/11265_2016_1145_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11265-016-1145-2/MediaObjects/11265_2016_1145_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11265-016-1145-2/MediaObjects/11265_2016_1145_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11265-016-1145-2/MediaObjects/11265_2016_1145_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11265-016-1145-2/MediaObjects/11265_2016_1145_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11265-016-1145-2/MediaObjects/11265_2016_1145_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11265-016-1145-2/MediaObjects/11265_2016_1145_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11265-016-1145-2/MediaObjects/11265_2016_1145_Fig8_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11265-016-1145-2/MediaObjects/11265_2016_1145_Fig9_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11265-016-1145-2/MediaObjects/11265_2016_1145_Fig10_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11265-016-1145-2/MediaObjects/11265_2016_1145_Fig11_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11265-016-1145-2/MediaObjects/11265_2016_1145_Fig12_HTML.gif)
Similar content being viewed by others
References
Agrell, E., Eriksson, T., Vardy, A., & Zeger, K. (2002). Closest point search in lattices. IEEE Transaction on Information Theory, 48(8), 2201–2214.
Chen, S., Zhang, T., & Xin, Y. (2007). Relaxed K-best MIMO signal detector design and VLSI implementation. IEEE Transaction on Very Large Scale Integration (VLSI) Systems, 15(3), 328–337.
Chen, X., He, G., & Ma, J. (2013). VLSI Implementation of a high-throughput iterative fixed- complexity sphere decoder. IEEE Transaction on Circuits and Systems II, 60(5), 272–276.
Damen, M.O., Chkeif, A., & Belore, J.C. (2000). Lattice code decoder for space-time codes. IEEE Communications Letters, 4(5), 161–163.
Fincke, U., & Pohst, M. (1985). Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Mathematics of Computation, 44, 463–471.
Guo, Z., & Nilsson, P. (2006). Algorithm and implementation of the K-Best sphere decoding for MIMO detection. IEEE Journal on Selected Areas in Communication, 24(3), 491–503.
Im, T.H., Park, I., Kim, J., Yi, J., Kim, J., Yu, S., & Cho, Y.S. (2009). A new signal detection method for spatially multiplexed MIMO systems and its VLSI implementation. IEEE Transaction on Circuits and Systems II, 56(5), 399–403.
Ju, C., Ma, J., Tian, C., & He, G. (2012). VLSI implementation of an 855 Mbps high performance soft-output K-best MIMO detector. In IEEE international symposium on circuits and systems (ISCAS) (pp. 2849–2852).
Li, Q., & Wang, Z. (2006). An improved K-Best sphere decoding architecture for MIMO systems. In Fortieth Asilomar conference on signals, systems and computers (pp. 2190–2194).
Mahdavi, M., & Shabany, M. (2011). Ultra high-throughput architectures for hard-output MIMO detectors in the complex domain. In IEEE international midwest symposium on circuits and systems (MWSCAS) (pp. 1–4).
Mahdavi, M., Shabany, M., & Vosoughi Vahdat, B. (2010). A modified complex K-best scheme for high-speed hard-output MIMO detectors. In IEEE international midwest symposium on circuits and systems (MWSCAS) (pp. 845–848).
Mondal, S., Eltawil, A., Shen, C., & Salama, K. (2010). Design and implementation of a sort-free K-Best sphere decoder. IEEE Transaction on Very Large Scale Integration (VLSI) Systems, 18(10), 1497–1501.
Shabany, M., & Gulak, P.G. (2010). A 675Mbps, 4x4 64-QAM Kbest MIMO detector in 0.13m CMOS. IEEE Transaction on Very Large Scale Integration (VLSI) Systems, 20(1), 135–147.
Studer, C., Fateh, S., & Seethaler, D. (2011). ASIC implementation of soft-input soft-output MIMO detection using MMSE parallel interference cancellation. IEEE Journal of Solid State Circuits, 46(7), 1754–1765.
Sukumar, C., Chung-An, S., & Eltawil, A. (2012). Joint detection and decoding for MIMO systems using convolutional codes: algorithm and VLSI architecture. IEEE Transaction on Circuits and Systems I, 59(9), 1919–1931.
Sun, Y., & Cavallaro, J. (2012). High-throughput soft-output MIMO detector based on path-preserving trellis-search algorithm. IEEE Transaction on Very Large Scale Integration (VLSI) Systems, 20(7), 1235–1247.
Sun, Y., & Cavallaro, J. (2012). Trellis-search based softinput soft-output MIMO detector: algorithm and VLSI architecture. IEEE Transaction on Signal Processing, 60(5), 2617–2627.
Wenk, M., Zellweger, M., Burg, A., Felber, N., & Fichtner, W. (2006). K-Best MIMO detection VLSI architectures achieving up to 424 Mbps. In IEEE international symposium on circuits and systems (ISCAS) (pp. 1151–1154).
Wong, K.W., Tsui, C.Y., Cheng, R.S.K., & Mow, W.H. (2002). A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels. In IEEE international symposium on circuits and systems (ISCAS) (pp. 273–276).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mahdavi, M., Shabany, M. A 13 Gbps, 0.13 μm CMOS, Multiplication-Free MIMO Detector. J Sign Process Syst 88, 273–285 (2017). https://doi.org/10.1007/s11265-016-1145-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11265-016-1145-2