Skip to main content
Log in

Increasing SDR Receiver Dynamic Range by ADC Diversity

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Nowadays, most radio implementations are based on software-defined radio (SDR) technologies. The capabilities of digital signal processing enable new applications like low power wide area networks (LPWAN), which are expected to play a decisive role in the upcoming Internet of Things. Centralized gateways, usually realized in an SDR architecture, are used to connect many thousands of objects to the internet. Due to the high variance of the received signal level, a high dynamic range is required for the SDR receiver front-end. In current receiver architectures, the dynamic range is mainly limited by the analog-to-digital converter (ADC). Several techniques have been proposed to extend the dynamic range by stacking multiple ADCs and driving them with different gain factors. Correlation of quantization noise was identified as key parameter to determine the dynamic range enhancement. This paper compares the proposed techniques and extends existing analysis tools for the use of arbitrary gain factors. Additionally, the influence of further noise sources like thermal noise and jitter are taken into account. The theoretical considerations are supported by simulations and measurements using a real LPWAN SDR implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  1. Analog Devices (2015). Ad9361 reference manual: ug-570. https://www.manualslib.com/manual/1071572/analog-devices-ad9361.html#manual.

  2. Analog Devices (2016). Iio oscilloscope. https://wiki.analog.com/resources/tools-software/linux-software/iio_oscilloscope.

  3. Chen, Y., Pollok, A., Haley, D., & Davis, L.M. (2013). Adc diversity for software defined radios. In Wireless Innovation Forum (Ed.), Proceedings of the SDR-WInncomm (Vol. 2013, pp. 181–186).

  4. Do, M.T. (2015). Ultra-narrowband wireless sensor networks modeling and optimization. Dissertation, INSA de Lyon, https://hal.archives-ouvertes.fr/tel-01267413/document.

  5. ETSI (2012). Electromagnetic compatibility and radio spectrum matters (erm); short range devices (srd); radio equipment to be used in the 25 mhz to 1 000 mhz frequency range with power levels ranging up to 500 mw; part 1: Technical characteristics and test methods. http://www.etsi.org/deliver/etsi_en/300200_300299/30022001/02.04.01_40/en_30022001v020401o.pdf.

  6. Ettus Research (2017). Universal software radio peripheral. https://www.ettus.com/.

  7. Friis, H.T. (1944). Noise figures of radio receivers. Proceedings of the IRE, 32 (7), 419–422. doi:10.1109/JRPROC.1944.232049.

    Article  Google Scholar 

  8. IEEE Standards Association (2011). Ieee standard for terminology and ieee standard for terminology and test methods for analog-to-digital converters. http://ieeexplore.ieee.org/xpl/mostrecentissue.jsp?punumber=5692954.

  9. Kilian, G., Breiling, M., Petkov, H.H., Lieske, H., Beer, F., Robert, J., & Heuberger, A. (2015). Increasing transmission reliability for telemetry systems using telegram splitting. IEEE Transactions on Communications, 63(3), 949–961. doi:10.1109/TCOMM.2014.2386859.

    Article  Google Scholar 

  10. Lauritzen, K.C., Talisa, S.H., & Peckerar, M. (2010). Impact of decorrelation techniques on sampling noise in radio-frequency applications. IEEE Transactions on Instrumentation and Measurement, 59(9), 2272–2279. doi:10.1109/TIM.2009.2036344.

    Article  Google Scholar 

  11. Lin, Y., Doris, K., Hegt, H., & van Roermund, A.H.M. (2012). An 11b pipeline adc with parallel-sampling technique for converting multi-carrier signals. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(5), 906–914. doi:10.1109/TCSI.2012.2185299.

  12. Link Labs (2016). A comprehensive look at low power, wide area networks: For internet of things engineers and decision makers. http://cdn2.hubspot.net/hubfs/427771/LPWAN-brochure-interactive.pdf.

  13. Miao, G.J. (2007). Signal processing in digital communications, 1st edn. Artech house signal processing library. http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xat&AN=225176.

  14. Poberezhskiy, Y.S. (2007). On dynamic range of digital receivers, 2007 IEEE aerospace conference. doi:10.1109/AERO.2007.352968 (pp. 1–17).

    Google Scholar 

  15. Pollok, A., Chen, Y., Haley, D., & Davis, L.M. (2014). Quantization noise mitigation via parallel adcs: Ieee signal processing letters. IEEE Signal Processing Letters, 21(12), 1491–1495. doi:10.1109/LSP.2014.2333737.

    Article  Google Scholar 

  16. Proakis, J.G., & Manolakis, D.G. (2007). Digital signal processing: principles, algorithms and applications, 4th edn. NJ: Pearson/Prentice Hall, Upper Saddle River.

    Google Scholar 

  17. Seifert, E., & Nauda, A. (1989). Enhancing the dynamic range of analog-to-digital converters by reducing excess noise, IEEE Pacific rim conference on communications, computers and signal processing, 1989 conference proceeding (pp. 574–576).

    Chapter  Google Scholar 

  18. Shinagawa, M., Akazawa, Y., & Wakimoto, T. (1990). Jitter analysis of high-speed sampling systems. IEEE Journal of Solid-State Circuits, 25(1), 220–224. doi:10.1109/4.50307.

    Article  Google Scholar 

  19. Ulbricht, G. (2012). Analog-to-digital conversion the bottleneck for software defined radio frontends, Proceedings of the SDR’12-WInncomm-europe (pp. 87–94).

    Google Scholar 

  20. Ulbricht, G. (2015). Experimental investigations on a stacked analog-to-digital converter configuration for a high dynamic range hf receiver, Proceedings of the 2015 german microwave conference (gemic). doi:10.1109/GEMIC.2015.7107750 (pp. 52–55).

    Chapter  Google Scholar 

  21. Vittoz, E.A. (1990). Future of analog in the vlsi environment, 1990 IEEE International symposium on circuits and systems doi:10.1109/ISCAS.1990.112386, (Vol. 2, pp. 1372–1375).

  22. Walden, R.H. (1999). Analog-to-digital converter survey and analysis. IEEE Journal on Selected Areas in Communications, 17(4), 539–550. doi:10.1109/49.761034.

    Article  MathSciNet  Google Scholar 

  23. Walport, M. (2014). The internet of things: making the most of the second digital revolution: a report by the uk government chief scientific adviser. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/409774/14-1230-internet-of-things-review.pdf.

  24. Watson, R.E. (1987). Receiver dynamic range: Part 1 and 2. Watkins-Johnson Company Tech Notes 14(1).

  25. Widrow, B., & Kollar, I. (2008). Quantization noise: Roundoff error in digital computation, signal processing, control, and communications Cambridge, New York: Cambridge University Press.

  26. Wong, P.W. (1990). Quantization noise, fixed-point multiplicative roundoff noise, and dithering. IEEE Transactions on Acoustics, Speech and Signal Processing, 38(2), 286–300. doi:10.1109/29.103065.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Ulbricht.

Appendix

Appendix

With the following derivation, based on [26], Eq. 33 shall be brought into a more descriptive form. First, we concentrate on the expectation value, which is the only component in Eq. 33 dependent on the input values. In general, the expectation value of an arbitrary function Ψ(X) of a continuous random variable X is

$$ \text{E}\left\{ {\Psi}(X)\right\} ={\int}_{-\infty}^{\infty}{\Psi}(\xi)\cdot f_{X}(\xi)\text{d}\xi. $$
(48)

Since 𝜖(x) is a periodic function, the mapping of the quantization errors ν i of both quantizers to the input values x is only unique within the step size q of the quantizer. Therefore, the integration is carried out step by step

$$\begin{array}{@{}rcl@{}} \text{E}\left\{ e^{j2\pi\frac{k+g_{2}l}{q}x}\right\} & =&{\int}_{-\infty}^{\infty}e^{j2\pi\frac{k+g_{2}l}{q}\xi}\cdot f_{X}(\xi)\cdot(h*{\Delta})(\xi)\text{d}\xi\\ & =&\sum\limits_{n=-\infty}^{\infty}{\int}_{-\infty}^{\infty}f_{X}(\xi)\cdot\left[h(\xi)*\delta(\xi-nq)\right]\cdot e^{j2\pi\frac{k+g_{2}l}{q}\xi}\text{d}\xi, \end{array} $$
(49)

with the rectangular function

$$ h(x)=\left\{\begin{array}{ll} 1 & -\frac{q}{2}\leq x\leq\frac{q}{2}\\ 0 & \text{elsewhere}, \end{array}\right. $$
(50)

and the Dirac comb

$$ {\Delta}_{q}(x)=\sum\limits_{n-\infty}^{\infty}\delta\left(x-nq\right). $$
(51)

The integral in Eq. 49 is a Fourier transformation with \(\omega =-2\pi \frac {k+g_{2}l}{q}\) , with this

$$\begin{array}{@{}rcl@{}} \text{E}\left\{ e^{j2\pi\frac{k+g_{2}l}{q}x}\right\} & =&\sum\limits_{n=-\infty}^{\infty}\left(F_{X}*H\right)\left(-\frac{k+g_{2}l}{q}\right)\cdot e^{j2\pi\frac{k+g_{2}l}{q}nq}\\ &=&\sum\limits_{n=-\infty}^{\infty}\left(F_{X}*H\right)\left(-\frac{k+g_{2}l}{q}\right)\cdot\frac{1}{q}\delta\\&&\times\left(-\frac{k+g_{2}l+n}{q}\right), \end{array} $$
(52)

where F(⋅) and H(⋅) are the Fourier transformations of f(⋅) and h(⋅), respectively.

Defining the characteristic function of the random variable X

$$ {\Phi}_{X}\left(j\omega\right)={\int}_{-\infty}^{\infty}e^{j\omega x}f_{X}(x)\text{d}x $$
(53)

and with the Fourier transformation of the rectangular function

$$ \mathcal{F}\left(h(ax)\right)=\frac{1}{\left|a\right|}\text{sinc}\left(\frac{\xi}{a}\right) $$
(54)

we get

$$\begin{array}{@{}rcl@{}} \text{E}\left\{ e^{j2\pi\frac{k+g_{2}l}{q}x}\right\} &=\!&\sum\limits_{n=-\infty}^{\infty}{\Phi}_{X}\!\left(\frac{k+g_{2}l}{q}\right)*\text{sinc}\left(k+g_{2}l\right)\cdot\delta\\&&\times\left(-\frac{k+g_{2}l+n}{q}\right). \end{array} $$
(55)

By substitution of Eqs. 55 in 33, we obtain the correlation coefficient of the quantization noise of two parallel ADCs quantizing differently scaled replicas of the same input signal depending on the the scaling factor g 2

$$ \rho_{\nu_{1},\nu_{2}}=\frac{3}{\pi^{2}}\sum\limits_{_{k\neq0 }^{k=-\infty} }^{\infty}\sum\limits_{_{l\neq0}^{l=-\infty}}^{\infty}\frac{\left(-1\right)^{k+l+1}}{kl}{\Phi}_{X}\!\left(\frac{k+g_{2}l}{q}\right)*\text{sinc}\left(k+g_{2}l\right). $$
(56)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulbricht, G., Kneißl, J., Kelm, C. et al. Increasing SDR Receiver Dynamic Range by ADC Diversity. J Sign Process Syst 89, 191–208 (2017). https://doi.org/10.1007/s11265-017-1250-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-017-1250-x

Keywords

Navigation