Skip to main content

Advertisement

Log in

Energy Efficient Multi-User Millimeter Wave MIMO Systems Using Tree Search Hybrid Precoding and Few-Bit ADCs

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Millimeter wave (mmWave) communication is an emerging technique to provide large bandwidth in cellular systems. However, mmWave signals experience more pathloss than the microwave signals adopted in current wireless communications. Therefore, a mmWave system tends to adopt a large number of antennas to combat pathloss with high beamforming gain. In conventional multi-antenna systems, both beamforming and precoding are done digitally in baseband. The high cost and power consumption of certain components in mmWave systems render conventional architecture infeasible. In this paper, we consider low complexity hybrid analog/digital precoding and low-resolution analog-digital converters (ADCs) (1–3 bits) in downlink multiuser mmWave MIMO systems. We propose a new transmission scheme involving rationale of beamspace MIMO communications and beam selection. We also develop a low complexity beam selection algorithm and evaluate adaptive selection on the RF configuration for energy efficiency (EE) optimization. Our analysis and simulation results show that the proposed scheme can significantly reduce system complexity and achieve good performance on energy efficiency and detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Bai, T., Alkhateeb, A., & Heath, R. W. (2014). Coverage and capacity of millimeter-wave cellular networks. IEEE Communications Magazine, 52(9), 70–77.

    Article  Google Scholar 

  2. Pi, Z., & Khan, F. (2014). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.

    Article  Google Scholar 

  3. Rappaport, T. (2013). Millimeter-wave mobile communications for 5G cellular: it will work! IEEE Access, 1, 335–349.

    Article  Google Scholar 

  4. Rappaport, T. (2014). Millimeter wave wireless communication. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  5. Zhang, J., Dai, L., Sun, S., & Wang, Z. (2016). On the spectral efficiency of massive MIMO systems with low-resolution ADCs. IEEE Communications Letters, 20(5), 842–845.

    Article  Google Scholar 

  6. Alkhateeb, A., Mo, J., Gonzalez-Prelcic, N., & Heath, R. W. (2014). MIMO precoding and combining solutions for millimeter-wave systems. IEEE Communications Magazine, 52(12), 122–131.

    Article  Google Scholar 

  7. Ayach, O. E., Rajagopal, S., Abu-Surra, S., Pi, Z., & Heath, R. W. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications, 13(3), 1499–1513.

    Article  Google Scholar 

  8. Venkateswaran, V., & van der Veen, A.-J. (2010). Analog beamforming in MIMO communications with phase shift networks and online channel estimation. IEEE Transactions on Signal Processing, 58(8), 4131–4143.

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, X., Molisch, A., & Kung, S. (2005). Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection. IEEE Transactions on Signal Processing, 53(11), 4091–4103.

    Article  MathSciNet  MATH  Google Scholar 

  10. Alkhateeb, A., Leus, G., & Heath, R. W. (2015). Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Transactions on Wireless Communications, 14(11), 6481–6494.

    Article  Google Scholar 

  11. Bogale, T. E., & Le, L. B. (2014). Beamforming for multiuser massive MIMO systems: digital versus hybrid analog-digital. In Proc. IEEE GLOBECOM (pp. 4066–4071).

  12. Xue, X., Bogale, T. E., Wang, X., Wang, Y., & Le, L. B. (2014). Hybrid analog-digital beamforming for multiuser MIMO millimeter wave relay systems. IEEE GLOBECOM (pp. 1–7).

  13. Kulkarni, M. N., Ghosh, A., & Andrews, J. G. (2016). A comparison of MIMO techniques in downlink millimeter wave cellular networks with htbrid beamforming. IEEE Transactions on Communications, 64(5), 1952–1967.

    Article  Google Scholar 

  14. Israel, J., Martinovic, J., Fischer, A., Jenning, M., & Landau, L. (2013). Optimal antenna positioning for wireless board-to-board communication using a Butler matrix beamforming network. In The 17 th Int. ITG Workshop on Smart Antenna (WSA).

  15. Bai, D., Ghassemzadeh, S., Miller, R., & Tarokh, V. (2008). Beam selection gain from Butler matrices. In Proc. 68 th IEEE Veh. Technol. Conf. (VTC Fall) (pp. 1-5).

  16. Mo, J., & Heath, R. W. (2015). Capacity analysis of one-bit quantized MIMO systems with transmitter channel state information. IEEE Transactions on Signal Processing, 63(20), 5498–5512.

    Article  MathSciNet  Google Scholar 

  17. Mo, J., Alkhateeb, A., Abu-Surra, S., & Heath R. W. (2016). Hybrid architectures with few-bit ADC receivers: achievable rates and energy-rate tradeoffs. Submitted to IEEE Trans. Wireless Commun., arXiv preprint arXiv:1605.00668.

  18. 3GPP TR 36.873, v1. 3.0 (2014). Study on 3D channel model for LTE (Release 12).

  19. Thomas, T. A., Nguyen, H. C., MacCartney, G. R., & Rappaport, T. (2014). 3D MmWave channel model proposal. 2014 I.E. Veh. Technol. Conf. (VTC Fall).

  20. Cui, S., Goldsmith, A. J., & Bahai, A. (2004). Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE Journal on Selected Areas in Communications, 22(6), 1089–1098.

    Article  Google Scholar 

  21. Le, B., Rondeau, T. W., Reed, J. H., & Bostian, C. W. (2005). Analog-to-digital converters. IEEE Signal Processing Magazine, 22(6), 69–77.

    Article  Google Scholar 

  22. Hunger, R. (2007). Floating point operation in matrix-vector calculus. Technische Universität München, Associate Institute for Signal Processing, Tech. Rep.

  23. Amadori, P., & Masouros, C. (2015). Low RF-complexity millimeter-wave beamspace-MIMO systems by beam selection. IEEE Transactions on Communications, 63(6), 2212–2222.

    Article  Google Scholar 

  24. Singh, J., Dabeer, O., & Madhow, U. (2009). On the limits of communication with low-precision analog-to-digital conversion at the receiver. IEEE Transactions on Communications, 57(12), 3629–3639.

    Article  Google Scholar 

  25. Rizvi, U. H., Janssen, G. J. M., & Weber, J. H. (2008). BER analysis of BPSK and QPSK constellations in the presence of ADC quantization noise. In Proc. IEEE Asia-Pacific Conf. Commun. (APCC).

  26. Bock, R. K., & Krischer, W. (1998). The data analysis BriefBook. Berlin: Spring-Verlag.

    Book  MATH  Google Scholar 

  27. Proakis, J. G. (2008). Digital communications. New York: McGraw-Hill.

    MATH  Google Scholar 

  28. Cui, S., Goldsmith, A. J., & Bahai, A. (2005). Energy-constrained modulation optimization. IEEE Transactions on Wireless Communications, 4(5), 2349–2360.

    Article  Google Scholar 

  29. Spencer, Q. H., Swindlehurst, A. L., & Haardt, M. (2004). Zero-forcing methods for downlink spatial multiplexing in multi-user MIMO channels. IEEE Transactions on Signal Processing, 52(2), 461–471.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministry of Science and Technology under grant numbers MOST 105-2221-E-009-019, 105-2622-8-009-010, 105-2221-E-001-009-MY3 and 104-2221-E-009-081, and Academia Sinica Thematic Project AS-104-TP-A05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsin-Jung Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HJ., Lin, LF., Chung, WH. et al. Energy Efficient Multi-User Millimeter Wave MIMO Systems Using Tree Search Hybrid Precoding and Few-Bit ADCs. J Sign Process Syst 90, 1387–1399 (2018). https://doi.org/10.1007/s11265-017-1301-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-017-1301-3

Keywords

Navigation