Skip to main content
Log in

Adaptive Early Termination Algorithm Using Coding Unit Depth History in HEVC

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This study proposes an adaptive early termination algorithm using a coding unit (CU) depth history (AECH). AECH uses the temporal correlation of co-located coding tree units (CTUs) and traces a CU depth history. For tracing the CU depth history, AECH computes the average of all CU depth values and finds the standard deviation of the CU depth history from the average. The target CU depth range is then adaptively chosen based on the standard deviation from the mean. The proposed algorithm can skip the CU depths, which are out of range. Thus, it can considerably reduce computational complexity. AECH yields time-saving (TS) performance of 42.15 and 41.08% (low delay B) compared to the high efficiency video coding test model (HM) 9.0 and 12.0 version, respectively. Furthermore, AECH shows 40.51% TS (low delay P) in HM 12.0. In addition, the proposed algorithm increments Bjontegaard delta bitrate (BDBR) at only approximately 1.22 and 1.04% (low delay B) in HM 9.0 and HM 12.0, respectively. Moreover, AECH achieves 1.26% BDBR (low delay P) in HM 12.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bross, B., Han, W.-J., Ohm, J.-R., Sullivan, J.-R., Wang, Y.-K., & Wiegand, T. (2013). High Efficiency Video Coding (HEVC) text specification draft 10. JCT-VC of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, JCVT-L1003.

  2. Wiegand, T., Sullivan, G., Bjontegaard, G., & Luthra, A. (2003). Overview of the H. 264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 13(7), 560–576.

    Article  Google Scholar 

  3. Han, W.-J., et al. (2010). Improved video compression efficiency through flexible unit representation and corresponding extension of coding tools. IEEE Transactions on Circuits and Systems for Video Technology, 20(12), 1709–1720.

    Article  Google Scholar 

  4. Lee, J.-H., Park, C.-S., Kim, B.-G., Jun, D.-S., Jung, S.-H., & Choi, J. S. (2013). Novel fast PU decision algorithm for the HEVC video standard. In Proc. 20th IEEE Int. Conf. Image Process., pp. 1982–1985.

  5. Leng, J., Sun, L., Ikenaga, T., & Sakaida, S. (2011). Content based hierarchical fast coding unit decision algorithm for HEVC. Proc. Int. Conf. Multimedia Signal Process., 1, 56–59.

    Google Scholar 

  6. Shen, L., Liu, Z., Zhang, X., Zhao, W., & Zhang, Z. (2013). An effective CU size decision method for HEVC encoders. IEEE Transactions on Multimedia, 15(2), 465–470.

    Article  Google Scholar 

  7. Xiong, J., Li, H., Wu, Q., & Meng, F. (2014). A fast HEVC inter CU selection method based on pyramid motion divergence. IEEE Transactions on Multimedia, 16(2), 559–564.

    Article  Google Scholar 

  8. Xiong, J., Li, H., Meng, F., Zeng, B., Zhu, S., & Wu, Q. (2014). Fast and efficient inter CU decision for high efficiency video coding. In Proc. IEEE Int. Conf. Image Process., pp. 3715–3719.

  9. Xiong, J., Li, H., Meng, F., Zhu, S., Wu, Q., & Zeng, B. (2014). MRF-based fast HEVC inter CU decision with the variance of absolute differences. IEEE Transactions on Multimedia, 16(8), 2141–2153.

    Article  Google Scholar 

  10. Cassa, M., Naccari, M., & Pereira, F. (2012) Fast rate distortion optimization for the emerging HEVC standard. In Proc. Picture Coding Symp., pp. 493–496.

  11. Tan, H. L., Liu, F., Tan, Y. H., & Yeo, C. (2012). On fast coding tree block and mode decision for high-efficiency video coding (HEVC). In Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Kyoto, pp. 825–828.

  12. Shen, L., Zhang, Z., & Liu, Z. (2014). Adaptive inter-mode decision for HEVC jointly utilizing inter-level and spatiotemporal correlations. IEEE Transactions on Circuits and Systems for Video Technology, 24(10), 1709–1722.

    Article  Google Scholar 

  13. Vanne, J., Viitanen, M., & Hamalainen, T. (2014). Efficient mode decision schemes for HEVC inter prediction. IEEE Transactions on Circuits and Systems for Video Technology, 24(9), 1579–1593.

    Article  Google Scholar 

  14. Lee, J., Kim, S., Lim, K., & Lee, S. (2015). A fast CU size decision algorithm for HEVC. IEEE Transactions on Circuits and Systems for Video Technology, 25(3), 411–421.

    Article  Google Scholar 

  15. Zhang, Y., Kwong, S., Wang, X., Yuan, H., Pan, Z., & Xu, L. (2015). Machine learning-based coding unit depth decisions for flexible complexity allocation in high efficiency video coding. IEEE Transactions on Image Processing, 24(7), 2225–2238.

    Article  MathSciNet  MATH  Google Scholar 

  16. Xiong, J., Li, H., Meng, F., Wu, Q., & Ngan, K. (2015). Fast HEVC inter CU decision based on latent SAD estimation. IEEE Transactions on Multimedia, 17(12), 2147–2159.

    Article  Google Scholar 

  17. Correa, G., Assuncao, P., Agostini, L., & da Silva Cruz, L. (2014). A method for early-splitting of HEVC inter blocks based on decision trees. In Proc. 22nd Eur. Signal Process. Conf., pp. 276–280.

  18. Correa, G., Assuncao, P., Agostini, L., & da Silva Cruz, L. (2015). Fast HEVC encoding decisions using data mining. IEEE Transactions on Circuits and Systems for Video Technology, 25(4), 660–673.

    Article  Google Scholar 

  19. Chiang, P.-T., & Chang, T. S. (2013). Fast zero block detection and early CU termination for HEVC video coding. In Proc. IEEE Int. Symp. Circuits Syst., pp. 1640–1643.

  20. Kim, J., Yang, J., Won, K., & Jeon, B. (2012). Early determination of mode decision for HEVC. In Proc. Picture Coding Symp., pp. 449–452.

  21. Shen, X., Yu, L., & Chen, J. (2012). Fast coding unit size selection for HEVC based on Bayesian decision rule. In Proc. Picture Coding Symp., pp. 453–456.

  22. Pan, Z., Kwong, S., Sun, M.-T., & Lei, J. (2014). Early merge mode decision based on motion estimation and hierarchical depth correlation for HEVC. IEEE Transactions on Broadcasting, 60(2), 405–412.

    Article  Google Scholar 

  23. Ahn, S., Kim, M., & Park, S. (2013). Fast decision of CU partitioning based on SAO parameter, motion and PU/TU split information for HEVC,” in Proc. Picture Coding Symp., pp. 113–116.

  24. Ahn, S., Lee, B., & Kim, M. (2015). A novel fast CU encoding scheme based on spatiotemporal encoding parameters for HEVC inter coding. IEEE Transactions on Circuits and Systems for Video Technology, 25(3), 422–435.

    Article  Google Scholar 

  25. Bjontegaard, G. (2001) Calculation of average PSNR differences between RD-curves. Austin: ITU-T SG 16 Q. 6 document, VCEG-M33.

Download references

Acknowledgements

This work was partly supported by the National Research Foundation of Korea by the Korea government (NRF-2017R1A2A2A05001046) and by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2018-2016-0-00309-002) supervised by the IITP (Institute for Information & communications Technology Promotion).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung Hoon Sunwoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, J.H., Sunwoo, M.H. Adaptive Early Termination Algorithm Using Coding Unit Depth History in HEVC. J Sign Process Syst 91, 863–873 (2019). https://doi.org/10.1007/s11265-018-1399-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-018-1399-y

Keywords

Navigation