Skip to main content
Log in

Sign Identifier for the Enhanced Three Moduli Set {2n + k, 2n − 1, 2n+ 1 − 1}

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

The three-moduli set {2n,2n − 1,2n+ 1 − 1} started to receive more attention lately. This moduli set is considered an arithmetic-friendly set because it avoids the demanding channel (2n + 1) of the traditional 3-moduli set {2n,2n − 1,2n + 1}. This work considers an enhanced form of the above moduli set, {2n + k,2n − 1,2n+ 1 − 1}, and proposes a sign identifier for numbers within the dynamic range of the set. While the published sign identifiers have dealt with the unextended form {2n,2n − 1,2n+ 1 − 1}, this is the first sign identifier that deals with the extended form. Based on VLSI layout synthesis for the case (k = 0), the proposed structure has less or similar area and power requirements, nevertheless, it achieves an improved time performance in the range of (13.0–29.6)% compared with the most recent sign identifiers. When compared with a recently published residue-to-binary converter for the moduli set {2n + k,2n − 1,2n− 1 − 1}, which can function as a converter-based sign identifier, the proposed detector has on average reduced area, time, and power by 175%, 106%, and 60%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Soderstrand, M.A., Jenkins, W.K., Jullien, G., Taylor, F. (Eds.) (1986). Residue number system arithmetic: modern applications in digital signal processing. New York: IEEE Press.

  2. Mohan, P.V. (2016). Residue number systems: theory and applications. Birkhauser: Switzerland.

    Book  MATH  Google Scholar 

  3. Hiasat, A. (2004). A suggestion for a fast residue multiplier for a family of moduli of the form (2n − (2p ± 1)). Computer Journal, 47(1), 93–102.

    Article  MathSciNet  MATH  Google Scholar 

  4. Sousa, L., Antao, A., Martins, P. (2016). Combining residue arithmetic to design efficient cryptographic circuits and systems. IEEE Circuits and Systems Magazine, 16(4), 6–32.

    Article  Google Scholar 

  5. Hiasat, A., & Al-Khateeb, A. (1998). Efficient digital sweep oscillator with extremely low sweep rates. IEE CD&S, 145(6), 409–414.

    Google Scholar 

  6. Dutta, C.B., Garai, P., Sinha, A. (2012). Design of a reconfigurable DSP processor with bit efficient residue number system. International Journal of VLSI Design & Commmunication System (VLSICS), 3(5), 175–189.

    Article  Google Scholar 

  7. Wei, J., Guo, W., Liu, H., Tan, Y. (2013). A unified cryptographic processor for RSA and ECC in RNS. In Communications in computer and information science (pp. 19–32). Berlin: Springer.

  8. Hiasat, A., & Zohdy, H. (1997). Design and implementation of an RNS division algorithm. In IEEE symposium on computer arithmetic (pp. 240–249).

  9. Hiasat, A. (1993). New designs for a sign detector and a residue to binary converter. IET Proceedings - Circuits, Devices and Systems, 140(4), 247–252.

    Article  Google Scholar 

  10. Bi, S., & Gross, W. (2008). The mixed-radix Chinese remainder theorem and its applications to residue comparison. IEEE Transactions on Computers, 57(12), 1624–1632.

    Article  MathSciNet  MATH  Google Scholar 

  11. Tomczak, T. (2008). Fast sign detection for RNS (2n − 1, 2n, 2n + 1). IEEE Transactions on Circuits and Systems I, 55(6), 1502–1511.

    Article  MathSciNet  Google Scholar 

  12. Pettenghi, H., Chaves, R., Sousa, L. (2004). (2n + 1, 2n + k, 2n − 1): a new RNS moduli set extension. In Proceedings of the EUROMICRO systems on digital system design (DSD’04) (pp. 210–217).

  13. Xu, M., Yao, R., Luo, F. (2012). Low-complexity sign detection algorithm for RNS {2n − 1, 2n, 2n + 1}. IEICE Transactions on Electronics, 95(9), 1552–1556.

    Article  Google Scholar 

  14. Kumar, S., & Chang, C.-H. (2016). New fast and area-efficient adder-based sign detector for RNS 2n − 1, 2n, 2n + 1. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(7), 2608–2612.

    Article  Google Scholar 

  15. Sousa, L., & Martins, P. (2016). Sign detection and number comparison on RNS 3-moduli sets {2n − 1, 2n + x, 2n + 1}. Circuits, Systems, and Signal Processing, 36(3), 1224–1246.

    Article  Google Scholar 

  16. Hiasat, A. (2016). A sign detector for a group of three-moduli sets. IEEE Transactions on Computers, 65(12), 3580–3590.

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu, M., Bian, Z., Yao, R. (2015). Fast sign detection algorithm for the RNS moduli set {2n+ 1 − 1, 2n − 1, 2n}. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(2), 379– 383.

    Article  Google Scholar 

  18. Niras, C.V., & Kong, Y. (2016). Fast sign-detection algorithm for residue number system moduli set {2n − 1, 2n, 2n+ 1 − 1}. IET Computers and Digital Techniques, 10(2), 54–58.

    Article  Google Scholar 

  19. Chang, C.-H., & Kumar, S. (2017). Area-efficient and fast sign detection for four-moduli set RNS (2n − 1, 2n, 2n + 1, 22n + 1). IEEE International Symposium on Circuits and Systems (ISCAS), 1540–1543.

  20. Hiasat, A. (2017). A reverse converter and sign detectors for an extended RNS five moduli set. IEEE Transactions on Circuits and Systems TCAS-I, 64(1), 111–121.

    Article  Google Scholar 

  21. Hiasat, A. (2018). A sign detector for the extended four moduli set {2n − 1, 2n, + 1, 22n + 1, 2n + k}. IET Proceedings - Computers and Digital Techniques, 12(2), 39–44.

    Article  Google Scholar 

  22. Kumar, S., Chang, C.-H., Tay, T.F. (2017). New algorithm for signed integer comparison in {2n + k, 2n − 1, 2n + 1, 2n± 1 − 1} and its efficient hardware implementation. IEEE Transactions on Circuits and Systems TCAS-I, 64(6), 1481–1493.

    Article  Google Scholar 

  23. Zimmerman, R. (1999). Efficient VLSI implementation of modulo (2n1) addition and multiplication. In Proceedings of the 14th IEEE symposium on computer arithmetic (pp. 158–167).

  24. Piestrak, S., & Berezowski, K. (2008). Design of residue multipliers-accumulators using periodicity. In Proceedings of the IET Irish signals and systems conference (ISSC) (pp. 380–385).

  25. Sheu, M.-H., Siao, S.-M., Hwang, Y.-T., Sun, C.-C., Lin, Y.-P. (2016). New adaptable three-moduli {2n + k, 2n,− 1, 2n− 1 − 1} residue number system-based finite impulse response implementation. IEICE Electronics Express, 13, 1–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Hiasat.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiasat, A., Sousa, L. Sign Identifier for the Enhanced Three Moduli Set {2n + k, 2n − 1, 2n+ 1 − 1}. J Sign Process Syst 91, 953–961 (2019). https://doi.org/10.1007/s11265-018-1434-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-018-1434-z

Keywords

Navigation