Skip to main content
Log in

Diffusion-Driven Image Denoising Model with Texture Preservation Capabilities

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Noise removal in images denotes an interesting and a relatively challenging problem that has captured the attention of many scholars. Recent denoising methods focus on simultaneously restoring noisy images and recovering their semantic features (edges and contours). But preservation of textures, which facilitate interpretation and analysis of complex images, remains an open-ended research question. Classical methods (Total variation and Perona-Malik) and image denoising approaches based on deep neural networks tend to smudge fine details of images. Results from previous studies show that these methods, in addition, can introduce undesirable artifacts into textured images. To address the challenges, we have proposed an image denoising method based on anisotropic diffusion processes. The divergence term of our method contains a diffusion kernel that depends on the evolving image and its gradient magnitude to ensure effective preservation of edges, contours, and textures. Furthermore, a regularization term has been proposed to denoise images corrupted by multiplicative noise. Empirical results demonstrate that the proposed method generates images with higher perceptual and objective qualities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Notes

  1. http://sipi.usc.edu/database/database.php?volume=textures

  2. http://decsai.ugr.es/cvg/CG/base.htm

References

  1. Maiseli, B., Msuya, H., Kessy, S., & Kisangiri, M. (2018). Perona–Malik model with self-adjusting shape-defining constant. Information Processing Letters, 137, 26–32.

    Article  MathSciNet  Google Scholar 

  2. Bai, J., & Feng, X.C. (2018). Image denoising using generalized anisotropic diffusion. Journal of Mathematical Imaging and Vision, 1–14.

  3. Theljani, A., Belhachmi, Z., & Moakher, M. (2019). High-order anisotropic diffusion operators in spaces of variable exponents and application to image inpainting and restoration problems. Nonlinear Analysis: Real World Applications, 47, 251– 271.

    Article  MathSciNet  Google Scholar 

  4. Shen, Y., Liu, Q., Lou, S., & Hou, Y.L. (2017). Wavelet-based total variation and nonlocal similarity model for image denoising. IEEE Signal Processing Letters, 24(6), 877–881.

    Article  Google Scholar 

  5. Zhang, J., & Hirakawa, K. (2017). Improved denoising via poisson mixture modeling of image sensor noise. IEEE Transactions on Image Processing, 26(4), 1565–1578.

    Article  MathSciNet  Google Scholar 

  6. Liu, S., Liu, M., Li, P., Zhao, J., Zhu, Z., & Wang, X. (2017). SAR image denoising via sparse representation in shearlet domain based on continuous cycle spinning. IEEE Transactions on Geoscience and Remote Sensing, 55(5), 2985–2992.

    Article  Google Scholar 

  7. Phophalia, A., & Mitra, S.K. (2017). 3D MR image denoising using rough set and kernel PCA method. Magnetic Resonance Imaging, 36, 135–145.

    Article  Google Scholar 

  8. Fan, F., Ma, Y., Li, C., Mei, X., Huang, J., & Ma, J. (2017). Hyperspectral image denoising with superpixel segmentation and low-rank representation. Information Sciences, 397, 48–68.

    Article  Google Scholar 

  9. Zhang, Y., Xiao, J., Peng, J., Ding, Y., Liu, J., Guo, Z., & Zong, X. (2018). Kernel wiener filtering model with low-rank approximation for image denoising. Information Sciences.

  10. Papari, G., Idowu, N., & Varslot, T. (2017). Fast bilateral filtering for denoising large 3D images. IEEE Transactions on Image Processing, 26, 251–261.

    Article  MathSciNet  Google Scholar 

  11. Sharma, K.K., Gurjar, D., Jyotyana, M., & Kumari, V. (2019). Denoising of brain MRI images using a hybrid filter method of Sylvester-Lyapunov equation and non local means. In Smart innovations in communication and computational sciences (pp. 495–505). Berlin: Springer.

  12. Fedorov, V., & Ballester, C. (2017). Affine non-local means image denoising. IEEE Transactions on Image Processing, 26(5), 2137–2148.

    Article  MathSciNet  Google Scholar 

  13. Bhujle, H., Vadavadagi, B.H., & Galaveen, S. (2018). Efficient non-local means denoising for image sequences with dimensionality reduction. Multimedia Tools and Applications, 1–19.

  14. Pal, C., Das, P., Chakrabarti, A., & Ghosh, R. (2017). Rician noise removal in magnitude MRI images using efficient anisotropic diffusion filtering. International Journal of Imaging Systems and Technology, 27(3), 248–264.

    Article  Google Scholar 

  15. Shahdoosti, H.R., & Hazavei, S.M. (2017). Image denoising in dual contourlet domain using hidden Markov tree models. Digital Signal Processing, 67, 17–29.

    Article  Google Scholar 

  16. Huang, S., Sun, Y., Wan, S., & Huang, J. (2018). An improved method on non-subsampled contourlet transform ultrasonic image denoising. DEStech Transactions on Computer Science and Engineering. (csse).

  17. Wang, X., Chen, W., Gao, J., & Wang, C. (2017). Hybrid image denoising method based on non-subsampled contourlet transform and bandelet transform. IET Image Processing, 12(5), 778–784.

    Article  Google Scholar 

  18. Sudeep, P., Palanisamy, P., Kesavadas, C., & Rajan, J. (2018). An improved nonlocal maximum likelihood estimation method for denoising magnetic resonance images with spatially varying noise levels. Pattern Recognition Letters.

  19. Upadhya, A.H., Talawar, B., & Rajan, J. (2017). GPU implementation of non-local maximum likelihood estimation method for denoising magnetic resonance images. Journal of Real-Time Image Processing, 13, 181–192.

    Article  Google Scholar 

  20. Surendran, S.S., Rajan, J., & Nair, M.S. (2017). A computationally efficient non-local maximum likelihood estimation approach for Rician noise reduction in MRI. CSI Transactions on ICT, 5(3), 247–257.

    Article  Google Scholar 

  21. Sudeep, P., Palanisamy, P., Kesavadas, C., Sijbers, J., Arnold, J., & Rajan, J. (2017). A nonlocal maximum likelihood estimation method for enhancing magnetic resonance phase maps. Signal, Image and Video Processing, 11(5), 913–920.

    Article  Google Scholar 

  22. Deng, L., Zhu, H., Yang, Z., & Li, Y. (2019). Hessian matrix-based fourth-order anisotropic diffusion filter for image denoising. Optics & Laser Technology, 110, 184–190.

    Article  Google Scholar 

  23. Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.

    Article  Google Scholar 

  24. Weickert, J. (1996). Theoretical foundations of anisotropic diffusion in image processing. In Theoretical foundations of computer vision (pp. 221–236): Springer.

  25. Perona, P., Shiota, T., & Malik, J. (1994). Anisotropic diffusion. In Geometry-driven diffusion in computer vision (pp. 73–92). Berlin: Springer.

  26. Weickert, J. (1999). Coherence-enhancing diffusion filtering. International Journal of Computer Vision, 31(2-3), 111–127.

    Article  Google Scholar 

  27. Lakra, M., & Kumar, S. (2020). A CNN-based computational algorithm for nonlinear image diffusion problem. Multimedia Tools and Applications, 79(33), 23887–23908.

    Article  Google Scholar 

  28. Li, R., Ma, F., Xu, F., Matthies, L.H., Olson, C.F., & Arvidson, R.E. (2002). Localization of Mars rovers using descent and surface-based image data. Journal of Geophysical Research: Planets, 107(E11).

  29. Bresina, L., Golden, K., Smith, E., & Washington, R. (1999). Increased flexibility and robustness of Mars rovers. Artificial Intelligence, Robotics and Automation in Space, 440, 167.

    Google Scholar 

  30. Bajracharya, M., Maimone, M.W., & Helmick, D. (2008). Autonomy for mars rovers: past, present, and future. Computer, 41(12).

  31. Weickert, J. (1998). Anisotropic diffusion in image processing, vol. 1. Teubner Stuttgart.

  32. Weickert, J., Romeny, B.T.H., & Viergever, M.A. (1998). Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing, 7(3), 398–410.

    Article  Google Scholar 

  33. Rudin, L.I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1-4), 259–268.

    Article  MathSciNet  Google Scholar 

  34. Charbonnier, P., Blanc-Féraud, L., Aubert, G., & Barlaud, M. (1997). Deterministic edge-preserving regularization in computed imaging. IEEE Transactions on Image Processing, 6(2), 298– 311.

    Article  Google Scholar 

  35. Courant, R., Friedrichs, K., & Lewy, H. (1967). On the partial difference equations of mathematical physics. IBM Journal of Research and Development, 11(2), 215–234.

    Article  MathSciNet  Google Scholar 

  36. Wang, Z., & Bovik, A.C. (2009). Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Processing Magazine, 26, 98–117.

    Article  Google Scholar 

  37. Wang, Z., Bovik, A.C., Sheikh, H.R., & Simoncelli, E.P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Article  Google Scholar 

  38. Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2017). Beyond a gaussian denoiser: residual learning of deep cnn for image denoising. IEEE Transactions on Image Processing, 26(7), 3142–3155.

    Article  MathSciNet  Google Scholar 

  39. Haralick, R., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6), 610–621.

    Article  Google Scholar 

  40. Thanh, D., Thanh, L., Hien, N., & Prasath, S. (2020). Adaptive total variation L1 regularization for salt and pepper image denoising. Optik, 208, 163677.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baraka Jacob Maiseli.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ally, N., Nombo, J., Ibwe, K. et al. Diffusion-Driven Image Denoising Model with Texture Preservation Capabilities. J Sign Process Syst 93, 937–949 (2021). https://doi.org/10.1007/s11265-020-01621-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-020-01621-3

Keywords

Navigation