Skip to main content
Log in

Trends and Challenges of Processing Measurements from Wearable Devices Intended for Epileptic Seizure Prediction

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

The rapid contemporary development of wearable devices offers non-invasive and effective approaches for monitoring the human brain. Recent studies have investigated the prediction of epileptic seizures (ESs) using wearable measurements, such as scalp electroencephalography and functional near-infrared spectroscopy. The signal processing tasks are the core component of emerging closed-loop ES prediction (ESP) systems. Various research groups have introduced many state-of-the-art signal processing techniques to improve ESP performance. Wearable measurements consider low frequency and low spatial resolution characteristics. In this paper, we provide a comprehensive review of signal processing techniques including preprocessing, feature extraction, dimensionality reduction and classification schemes for ESP systems. Trends and concerns of ESP studies at the end of the manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Organization, W. H. (2006). Neurological disorders: public health challenges: World Health Organization.

  2. Fisher, R. S., Boas, W. V. E., Blume, W., Elger, C., Genton, P., Lee, P., & Engel, J. (2005). Epileptic seizures and epilepsy: Definitions proposed by the international league against epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia, 46(4), 470–472.

    Article  Google Scholar 

  3. Engel Jr, J. (2013). Seizures and epilepsy (Vol. 83): Oxford University press.

  4. Kälviäinen, R., Salmenperä, T., Partanen, K., Vainio, P., Riekkinen, P., & Pitkänen, A. (1998). Recurrent seizures may cause hippocambal damage in temporal lobe epilepsy. Neurology, 50(5), 1377–1382.

    Article  Google Scholar 

  5. Camfield, P. R., & Camfield, C. S. (1996). Antiepileptic drug therapy: When is epilepsy truly intractable? Epilepsia, 37, S60–S65.

    Article  Google Scholar 

  6. Sisodiya, S., Lin, W. R., Harding, B., Squier, M., & Thom, M. (2002). Drug resistance in epilepsy: Expression of drug resistance proteins in common causes of refractory epilepsy. Brain, 125(1), 22–31.

    Article  Google Scholar 

  7. Feldwisch-Drentrup, H., Schelter, B., Jachan, M., Nawrath, J., Timmer, J., & Schulze-Bonhage, A. (2010). Joining the benefits: Combining epileptic seizure prediction methods. Epilepsia, 51(8), 1598–1606.

    Article  Google Scholar 

  8. Mirowski, P., Madhavan, D., LeCun, Y., & Kuzniecky, R. (2009). Classification of patterns of EEG synchronization for seizure prediction. Clinical Neurophysiology, 120(11), 1927–1940.

    Article  Google Scholar 

  9. Iasemidis, L. D. (2003). Epileptic seizure prediction and control. IEEE Transactions on Biomedical Engineering, 50(5), 549–558.

    Article  Google Scholar 

  10. Schulze-Bonhage, A., Sales, F., Wagner, K., Teotonio, R., Carius, A., Schelle, A., & Ihle, M. (2010). Views of patients with epilepsy on seizure prediction devices. Epilepsy & Behavior, 18(4), 388–396.

    Article  Google Scholar 

  11. Cendes, F. (2013). Neuroimaging in investigation of patients with epilepsy. CONTINUUM: Lifelong Learning in Neurology, 19(3), 623–642.

    Google Scholar 

  12. Duncan, J. S. (1997). Imaging and epilepsy. Brain: A Journal of Neurology, 120(2), 339–377.

    Article  Google Scholar 

  13. Lewy, H. (2015). Wearable technologies–future challenges for implementation in healthcare services. Healthcare technology letters, 2(1), 2–5.

    Article  Google Scholar 

  14. Alrige, M., & Chatterjee, S. (2015) Toward a taxonomy of wearable technologies in healthcare. In International Conference on Design Science Research in Information Systems, (pp. 496–504): Springer.

  15. Malwade, S., Abdul, S. S., Uddin, M., Nursetyo, A. A., Fernandez-Luque, L., Zhu, X. K., et al. (2018). Mobile and wearable technologies in healthcare for the ageing population. Computer Methods and Programs in Biomedicine, 161, 233–237.

    Article  Google Scholar 

  16. Waldert, S. (2016). Invasive vs. non-invasive neuronal signals for brain-machine interfaces: Will one prevail? [opinion]. Frontiers in Neuroscience, 10(295). https://doi.org/10.3389/fnins.2016.00295.

  17. Ozanne, A., Johansson, D., Hällgren Graneheim, U., Malmgren, K., Bergquist, F., & Alt Murphy, M. (2018). Wearables in epilepsy and Parkinson's disease—A focus group study. Acta Neurologica Scandinavica, 137(2), 188–194.

    Article  Google Scholar 

  18. Bruno, E., Simblett, S., Lang, A., Biondi, A., Odoi, C., Schulze-Bonhage, A., Wykes, T., Richardson, M. P., & RADAR-CNS Consortium. (2018). Wearable technology in epilepsy: The views of patients, caregivers, and healthcare professionals. Epilepsy & Behavior, 85, 141–149.

    Article  Google Scholar 

  19. Johansson, D., Malmgren, K., & Murphy, M. A. (2018). Wearable sensors for clinical applications in epilepsy, Parkinson’s disease, and stroke: A mixed-methods systematic review. Journal of Neurology, 265(8), 1740–1752.

    Article  Google Scholar 

  20. Niedermeyer, E., & da Silva, F. L. (2005). Electroencephalography: basic principles, clinical applications, and related fields: Lippincott Williams & Wilkins.

  21. Bunce, S. C., Izzetoglu, M., Izzetoglu, K., Onaral, B., & Pourrezaei, K. (2006). Functional near-infrared spectroscopy. IEEE Engineering in Medicine and Biology Magazine, 25(4), 54–62.

    Article  Google Scholar 

  22. Piper, S. K., Krueger, A., Koch, S. P., Mehnert, J., Habermehl, C., Steinbrink, J., Obrig, H., & Schmitz, C. H. (2014). A wearable multi-channel fNIRS system for brain imaging in freely moving subjects. NeuroImage, 85, 64–71.

    Article  Google Scholar 

  23. Cook, M. J., O'Brien, T. J., Berkovic, S. F., Murphy, M., Morokoff, A., Fabinyi, G., D'Souza, W., Yerra, R., Archer, J., Litewka, L., Hosking, S., Lightfoot, P., Ruedebusch, V., Sheffield, W. D., Snyder, D., Leyde, K., & Himes, D. (2013). Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: A first-in-man study. The Lancet Neurology, 12(6), 563–571.

    Article  Google Scholar 

  24. Golestani, A., & Gras, R. (2014). Can we predict the unpredictable? Scientific Reports, 4, 6834.

    Article  Google Scholar 

  25. Kalitzin, S., & Lopes, d. S. F. (2014). Predicting the unpredictable: The challenge or mirage of seizure prediction? Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 125(10), 1930–1931.

    Article  Google Scholar 

  26. Kuhlmann, L., Lehnertz, K., Richardson, M. P., Schelter, B., & Zaveri, H. P. (2018). Seizure prediction — Ready for a new era. Nature Reviews Neurology, 14(10), 618–630. https://doi.org/10.1038/s41582-018-0055-2.

    Article  Google Scholar 

  27. Di Bonaventura, C., Fattouch, J., Fabbrini, G., Manfredi, M., Prencipe, M., & Giallonardo, T. A. (2007). Switching from branded to generic antiepileptic drugs as a confounding factor and unpredictable diagnostic pitfall in epilepsy management. Epileptic Disorders, 9(4), 465–466.

    Google Scholar 

  28. Dumanis, S. B., French, J. A., Bernard, C., Worrell, G. A., & Fureman, B. E. (2017). Seizure forecasting from idea to reality. Outcomes of the my seizure gauge epilepsy innovation institute workshop. eNeuro, 4(6), ENEURO.0349-0317.2017, doi:https://doi.org/10.1523/ENEURO.0349-17.2017.

  29. Stacey, W. C. (2018). Seizure prediction is possible-now Let's make it practical. EBioMedicine, 27, 3–4. https://doi.org/10.1016/j.ebiom.2018.01.006.

    Article  Google Scholar 

  30. Chen, H.-H., & Cherkassky, V. (2020). Performance metrics for online seizure prediction. Neural Networks, 128, 22–32.

    Article  Google Scholar 

  31. Orosco, L., Correa, A. G., & Laciar, E. (2013). A survey of performance and techniques for automatic epilepsy detection. Journal of Medical and Biological Engineering, 33(6), 526–537.

    Article  Google Scholar 

  32. Parikh, R., Mathai, A., Parikh, S., Sekhar, G. C., & Thomas, R. (2008). Understanding and using sensitivity, specificity and predictive values. Indian Journal of Ophthalmology, 56(1), 45–50.

    Article  Google Scholar 

  33. Rasheed, K., Qayyum, A., Qadir, J., Sivathamboo, S., Kawn, P., Kuhlmann, L., et al. (2020). Machine learning for predicting epileptic seizures using EEG signals: A review. IEEE Reviews in Biomedical Engineering, PP, 1–1, doi:https://doi.org/10.1109/RBME.2020.3008792.

  34. Acharya, U. R., Hagiwara, Y., & Adeli, H. (2018). Automated seizure prediction. Epilepsy & Behavior, 88, 251–261. https://doi.org/10.1016/j.yebeh.2018.09.030.

    Article  Google Scholar 

  35. Bou Assi, E., Nguyen, D. K., Rihana, S., & Sawan, M. (2017). Towards accurate prediction of epileptic seizures: A review. Biomedical Signal Processing and Control, 34, 144–157. https://doi.org/10.1016/j.bspc.2017.02.001.

    Article  Google Scholar 

  36. Gadhoumi, K., Lina, J. M., Mormann, F., & Gotman, J. (2016). Seizure prediction for therapeutic devices: A review. Journal of Neuroscience Methods, 260, 270–282. https://doi.org/10.1016/j.jneumeth.2015.06.010.

    Article  Google Scholar 

  37. Bandarabadi, M., Rasekhi, J., Teixeira, C. A., Karami, M. R., & Dourado, A. (2015). On the proper selection of preictal period for seizure prediction. Epilepsy & Behavior, 46, 158–166.

    Article  Google Scholar 

  38. Rasekhi, J., Mollaei, M. R., Bandarabadi, M., Teixeira, C. A., & Dourado, A. (2013). Preprocessing effects of 22 linear univariate features on the performance of seizure prediction methods. Journal of Neuroscience Methods, 217(1–2), 9–16. https://doi.org/10.1016/j.jneumeth.2013.03.019.

    Article  Google Scholar 

  39. Tsiouris, K., Pezoulas, V. C., Zervakis, M., Konitsiotis, S., Koutsouris, D. D., & Fotiadis, D. I. (2018). A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals. Computers in Biology and Medicine, 99, 24–37. https://doi.org/10.1016/j.compbiomed.2018.05.019.

    Article  Google Scholar 

  40. Mormann, F., Kreuz, T., Rieke, C., Andrzejak, R. G., Kraskov, A., David, P., Elger, C. E., & Lehnertz, K. (2005). On the predictability of epileptic seizures. Clinical Neurophysiology, 116(3), 569–587. https://doi.org/10.1016/j.clinph.2004.08.025.

    Article  Google Scholar 

  41. Shahidi Zandi, A., Tafreshi, R., Javidan, M., & Dumont, G. A. (2010). Predicting temporal lobe epileptic seizures based on zero-crossing interval analysis in scalp EEG. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2010, 5537–5540. https://doi.org/10.1109/IEMBS.2010.5626764.

    Article  Google Scholar 

  42. Hjorth, B. (1970). EEG analysis based on time domain properties. Electroencephalography and Clinical Neurophysiology, 29(3), 306–310. https://doi.org/10.1016/0013-4694(70)90143-4.

    Article  Google Scholar 

  43. Teixeira, C. A., Direito, B., Bandarabadi, M., Le Van Quyen, M., Valderrama, M., Schelter, B., et al. (2014). Epileptic seizure predictors based on computational intelligence techniques: A comparative study with 278 patients. Computer Methods and Programs in Biomedicine, 114(3), 324–336. https://doi.org/10.1016/j.cmpb.2014.02.007.

    Article  Google Scholar 

  44. Henry, M. J., Herrmann, B., & Obleser, J. (2014). Entrained neural oscillations in multiple frequency bands comodulate behavior. Proceedings of the National Academy of Sciences, 111(41), 14935–14940. https://doi.org/10.1073/pnas.1408741111.

    Article  Google Scholar 

  45. Kahana, M. J. (2006). The cognitive correlates of human brain oscillations. The Journal of Neuroscience, 26(6), 1669–1672. https://doi.org/10.1523/JNEUROSCI.3737-05c.2006.

    Article  Google Scholar 

  46. Kumar, J. S., & Bhuvaneswari, P. (2012). Analysis of electroencephalography (EEG) signals and its categorization–a study. Procedia Engineering, 38, 2525–2536. https://doi.org/10.1016/j.proeng.2012.06.298.

    Article  Google Scholar 

  47. Nussbaumer, H. J. (1981). The fast Fourier transform. In Fast Fourier Transform and Convolution Algorithms (pp. 80-111): Springer.

  48. Bandarabadi, M., Teixeira, C. A., Rasekhi, J., & Dourado, A. (2015). Epileptic seizure prediction using relative spectral power features. Clinical Neurophysiology, 126(2), 237–248. https://doi.org/10.1016/j.clinph.2014.05.022.

    Article  Google Scholar 

  49. Truong, N. D., Nguyen, A. D., Kuhlmann, L., Bonyadi, M. R., Yang, J., Ippolito, S., & Kavehei, O. (2018). Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram. Neural Networks, 105, 104–111. https://doi.org/10.1016/j.neunet.2018.04.018.

    Article  Google Scholar 

  50. Antonini, M., Barlaud, M., Mathieu, P., & Daubechies, I. (1992). Image coding using wavelet transform. IEEE Transactions on Image Processing, 1(2), 205–220.

    Article  Google Scholar 

  51. Shensa, M. J. (1992). The discrete wavelet transform: Wedding the a trous and Mallat algorithms. IEEE Transactions on Signal Processing, 40(10), 2464–2482.

    Article  MATH  Google Scholar 

  52. Elgohary, S., Eldawlatly, S., & Khalil, M. I. (2016) Epileptic seizure prediction using zero-crossings analysis of EEG wavelet detail coefficients. In 2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 5–7 Oct. 2016 (pp. 1–6). doi:https://doi.org/10.1109/CIBCB.2016.7758115.

  53. Direito, B., Dourado, A., Vieira, M., & Sales, F. (2008) Combining Energy and Wavelet Transform for Epileptic Seizure Prediction in an Advanced Computational System. In 2008 International Conference on BioMedical Engineering and Informatics, 27–30 May 2008 (Vol. 2, pp. 380–385). doi:https://doi.org/10.1109/BMEI.2008.276.

  54. Khan, H., Marcuse, L., Fields, M., Swann, K., & Yener, B. (2018). Focal onset seizure prediction using convolutional networks. IEEE Transactions on Biomedical Engineering, 65(9), 2109–2118. https://doi.org/10.1109/TBME.2017.2785401.

    Article  Google Scholar 

  55. Ahmadi, A., & Soltanian-Zadeh, H. (2019) Epileptic Seizure Prediction Using Spectral Entropy-Based Features of EEG. In 2019 4th International Conference on Pattern Recognition and Image Analysis (IPRIA), 6–7 March 2019 (pp. 124–129). doi:https://doi.org/10.1109/PRIA.2019.8785984.

  56. Yang, Y., Zhou, M., Niu, Y., Li, C., Cao, R., Wang, B., Yan, P., Ma, Y., & Xiang, J. (2018). Epileptic seizure prediction based on permutation entropy. Frontiers in Computational Neuroscience, 12, 55. https://doi.org/10.3389/fncom.2018.00055.

    Article  Google Scholar 

  57. Wang, N., & Lyu, M. R. (2015). Extracting and selecting distinctive EEG features for efficient epileptic seizure prediction. IEEE Journal of Biomedical and Health Informatics, 19(5), 1648–1659. https://doi.org/10.1109/JBHI.2014.2358640.

    Article  Google Scholar 

  58. Maragos, P., Kaiser, J. F., & Quatieri, T. F. (1993). Energy separation in signal modulations with application to speech analysis. IEEE Transactions on Signal Processing, 41(10), 3024–3051. https://doi.org/10.1109/78.277799.

    Article  MATH  Google Scholar 

  59. Frei, M. G., & Osorio, I. (2006). Intrinsic time-scale decomposition: Time–frequency–energy analysis and real-time filtering of non-stationary signals. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2078), 321–342. https://doi.org/10.1098/rspa.2006.1761.

    Article  MathSciNet  MATH  Google Scholar 

  60. Martis, R. J., Acharya, U. R., Tan, J. H., Petznick, A., Tong, L., Chua, C. K., et al. (2013). Application of intrinsic time-scale decomposition (ITD) to EEG signals for automated seizure prediction. International Journal of Neural Systems, 23(5), 1350023. https://doi.org/10.1142/S0129065713500238.

    Article  Google Scholar 

  61. Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1–3), 37–52.

    Article  Google Scholar 

  62. Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433–459.

    Article  Google Scholar 

  63. Rukhsar, S., Khan, Y. U., Farooq, O., Sarfraz, M., & Khan, A. T. (2019). Patient-specific epileptic seizure prediction in long-term scalp EEG signal using multivariate statistical process control. Irbm, 40(6), 320–331. https://doi.org/10.1016/j.irbm.2019.08.004.

    Article  Google Scholar 

  64. Radovic, M., Ghalwash, M., Filipovic, N., & Obradovic, Z. (2017). Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinformatics, 18(1), 1–14.

    Article  Google Scholar 

  65. Ramírez-Gallego, S., Lastra, I., Martínez-Rego, D., Bolón-Canedo, V., Benítez, J. M., Herrera, F., & Alonso-Betanzos, A. (2017). Fast-mRMR: Fast minimum redundancy maximum relevance algorithm for high-dimensional big data. International Journal of Intelligent Systems, 32(2), 134–152.

    Article  Google Scholar 

  66. Ding, C., & Peng, H. (2005). Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology, 3(2), 185–205. https://doi.org/10.1142/s0219720005001004.

    Article  Google Scholar 

  67. Direito, B., Ventura, F., Teixeira, C., & Dourado, A. (2011). Optimized feature subsets for epileptic seizure prediction studies. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, 1636–1639. https://doi.org/10.1109/IEMBS.2011.6090472.

    Article  Google Scholar 

  68. Lin, X., Yang, F., Zhou, L., Yin, P., Kong, H., Xing, W., Lu, X., Jia, L., Wang, Q., & Xu, G. (2012). A support vector machine-recursive feature elimination feature selection method based on artificial contrast variables and mutual information. Journal of Chromatography B, 910, 149–155.

    Article  Google Scholar 

  69. Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4(2), 65–85.

    Article  Google Scholar 

  70. Ibrahim, F., Abd-Elateif El-Gindy, S., El-Dolil, S. M., El-Fishawy, A. S., El-Rabaie, E.-S. M., Dessouky, M. I., et al. (2019). A statistical framework for EEG channel selection and seizure prediction on mobile. International Journal of Speech Technology, 22(1), 191–203. https://doi.org/10.1007/s10772-018-09565-7.

    Article  Google Scholar 

  71. Chang, N., Chen, T., Chiang, C., & Chen, L. (2012) Channel selection for epilepsy seizure prediction method based on machine learning. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 28 Aug.-1 Sept. 2012 (pp. 5162–5165). doi:https://doi.org/10.1109/EMBC.2012.6347156.

  72. Daoud, H., & Bayoumi, M. A. (2019). Efficient epileptic seizure prediction based on deep learning. IEEE Transactions on Biomedical Circuits and Systems, 13(5), 804–813. https://doi.org/10.1109/TBCAS.2019.2929053.

    Article  Google Scholar 

  73. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.

  74. Michie, D., Spiegelhalter, D. J., & Taylor, C. (1994). Machine learning. Neural and Statistical Classification, 13(1994), 1–298.

    MATH  Google Scholar 

  75. Vapnik, V. (1963). Pattern recognition using generalized portrait method. Automation and Remote Control, 24, 774–780.

    Google Scholar 

  76. Gardner, M. W., & Dorling, S. (1998). Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences. Atmospheric Environment, 32(14–15), 2627–2636.

    Article  Google Scholar 

  77. Leshno, M., Lin, V. Y., Pinkus, A., & Schocken, S. (1993). Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks, 6(6), 861–867.

    Article  Google Scholar 

  78. Hecht-Nielsen, R. (1992). Theory of the backpropagation neural network. In Neural networks for perception (pp. 65-93): Elsevier.

  79. Balakrishnama, S., & Ganapathiraju, A. (1998) Linear discriminant analysis-a brief tutorial. In Institute for Signal and information Processing, (Vol. 18, pp. 1–8, Vol. 1998).

  80. Alotaiby, T. N., Alshebeili, S. A., Alotaibi, F. M., & Alrshoud, S. R. (2017). Epileptic seizure prediction using CSP and LDA for scalp EEG signals. Computational Intelligence and Neuroscience, 2017, 111.

    Article  Google Scholar 

  81. Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 660–674.

    Article  MathSciNet  Google Scholar 

  82. Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1): MIT press Cambridge.

  83. Shahbazi, M., & Aghajan, H. (2018) A Generalizable Model for Seizure Prediction based on Deep Learning using CNN-LSTM Architecture. In 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), 26–29 Nov. 2018 (pp. 469–473). doi:https://doi.org/10.1109/GlobalSIP.2018.8646505.

  84. Xu, Y., Yang, J., Zhao, S., Wu, H., & Sawan, M. (2020) An End-to-End Deep Learning Approach for Epileptic Seizure Prediction. In 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), 31 Aug.-2 Sept. 2020 (pp. 266–270). doi:https://doi.org/10.1109/AICAS48895.2020.9073988.

  85. Liu, C., Xiao, B., Hsaio, W., & Tseng, V. S. (2019). Epileptic seizure prediction with multi-view convolutional neural networks. IEEE Access, 7, 170352–170361. https://doi.org/10.1109/ACCESS.2019.2955285.

    Article  Google Scholar 

  86. Rosas-Romero, R., Guevara, E., Peng, K., Nguyen, D. K., Lesage, F., Pouliot, P., & Lima-Saad, W. E. (2019). Prediction of epileptic seizures with convolutional neural networks and functional near-infrared spectroscopy signals. Computers in Biology and Medicine, 111, 103355. https://doi.org/10.1016/j.compbiomed.2019.103355.

    Article  Google Scholar 

  87. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735.

    Article  Google Scholar 

  88. Thara, D. K., PremaSudha, B. G., & Xiong, F. (2019). Epileptic seizure detection and prediction using stacked bidirectional long short term memory. Pattern Recognition Letters, 128, 529–535. https://doi.org/10.1016/j.patrec.2019.10.034.

    Article  Google Scholar 

  89. Guevara, E., Flores-Castro, J.-A., Peng, K., Nguyen, D. K., Lesage, F., Pouliot, P., & Rosas-Romero, R. (2020). Prediction of epileptic seizures using fNIRS and machine learning. Journal of Intelligent & Fuzzy Systems, 38(2), 2055–2068. https://doi.org/10.3233/jifs-190738.

    Article  Google Scholar 

  90. Affes, A., Mdhaffar, A., Triki, C., Jmaiel, M., & Freisleben, B. (2019). A convolutional gated recurrent neural network for epileptic seizure prediction. In How AI Impacts Urban Living and Public Health (pp. 85-96, lecture notes in computer science).

  91. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al. (2014) Generative adversarial nets. In Advances in neural information processing systems, (pp. 2672–2680).

  92. Truong, N. D., Zhou, L., & Kavehei, O. (2019) Semi-supervised seizure prediction with generative adversarial networks. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (pp. 2369–2372): IEEE.

  93. Truong, N. D., Kuhlmann, L., Bonyadi, M. R., Querlioz, D., Zhou, L., & Kavehei, O. (2019). Epileptic seizure forecasting with generative adversarial networks. IEEE Access, 7, 143999–144009.

    Article  Google Scholar 

  94. Schliebs, S., & Kasabov, N. (2013). Evolving spiking neural network—A survey. Evolving Systems, 4(2), 87–98.

    Article  Google Scholar 

  95. Caporale, N., & Dan, Y. (2008). Spike timing–dependent plasticity: A Hebbian learning rule. Annual Review of Neuroscience, 31, 25–46.

    Article  Google Scholar 

  96. Dan, Y., & Poo, M.-M. (2006). Spike timing-dependent plasticity: From synapse to perception. Physiological Reviews, 86(3), 1033–1048.

    Article  Google Scholar 

  97. Kasabov, N. K. (2014). NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Networks, 52, 62–76.

    Article  Google Scholar 

  98. Kasabov, N., Scott, N. M., Tu, E., Marks, S., Sengupta, N., Capecci, E., Othman, M., Doborjeh, M. G., Murli, N., Hartono, R., Espinosa-Ramos, J. I., Zhou, L., Alvi, F. B., Wang, G., Taylor, D., Feigin, V., Gulyaev, S., Mahmoud, M., Hou, Z. G., & Yang, J. (2016). Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: Design methodology and selected applications. Neural Networks, 78, 1–14.

    Article  MATH  Google Scholar 

  99. Capecci, E., Espinosa Ramos, J., Mammone, N., Kasabov, N., Duun-Henriksen, J., Kjaer, T., et al. (2015). Modelling absence epilepsy seizure data in the NeuCube evolving spiking neural network architecture.

  100. Zhao, S., Yang, J., Xu, Y., & Sawan, M. (2020) Binary Single-Dimensional Convolutional Neural Network for Seizure Prediction. In 2020 IEEE International Symposium on Circuits and Systems (ISCAS), 12–14 Oct. 2020 (pp. 1–5). doi:https://doi.org/10.1109/ISCAS45731.2020.9180430.

  101. Kueh, S. M., & Kazmierski, T. J. (2018). Low-power and low-cost dedicated bit-serial hardware neural network for epileptic seizure prediction system. IEEE Journal of Translational Engineering in Health and Medicine, 6, 1–9.

    Article  Google Scholar 

  102. Truong, N. D., & Kavehei, O. (2019) Low precision electroencephalogram for seizure detection with convolutional neural network. In 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), (pp. 299–301): IEEE.

  103. Wagenaar, J. B., Worrell, G. A., Ives, Z., Dümpelmann, M., Litt, B., & Schulze-Bonhage, A. (2015). Collaborating and sharing data in epilepsy research. Journal of clinical neurophysiology: official publication of the American Electroencephalographic Society, 32(3), 235–239.

    Article  Google Scholar 

  104. Shoeb, A. H. (2009). Application of machine learning to epileptic seizure onset detection and treatment. Massachusetts Institute of Technology,

  105. Shoeb, A., Edwards, H., Connolly, J., Bourgeois, B., Treves, S. T., & Guttag, J. (2004). Patient-specific seizure onset detection. Epilepsy & Behavior, 5(4), 483–498.

    Article  Google Scholar 

  106. Yuan, Q., Zhou, W., Zhang, L., Zhang, F., Xu, F., Leng, Y., Wei, D., & Chen, M. (2017). Epileptic seizure detection based on imbalanced classification and wavelet packet transform. Seizure, 50, 99–108.

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge funding support from Westlake University, Zhejiang Key R&D Program No. 2021C03002 and Bright Dream Joint Institute for Intelligent Robotics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Sawan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Yang, J. & Sawan, M. Trends and Challenges of Processing Measurements from Wearable Devices Intended for Epileptic Seizure Prediction. J Sign Process Syst 94, 527–542 (2022). https://doi.org/10.1007/s11265-021-01659-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-021-01659-x

Keywords