
Vol.:(0123456789)1 3

Journal of Signal Processing Systems (2023) 95:895–907
https://doi.org/10.1007/s11265-022-01819-7

OpenVVC Decoder Parameterized and Interfaced Synchronous
Dataflow (PiSDF) Model: Tile Based Parallelism

Naouel Haggui1,2  · Wassim Hamidouche1 · Fatma Belghith2 · Nouri Masmoudi2 · Jean‑François Nezan1

Received: 5 May 2022 / Revised: 9 September 2022 / Accepted: 3 October 2022 / Published online: 14 October 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
The emergence of the new video coding standard, Versatile Video Coding (VVC), has resulted in a 40-50% coding gain over
its predecessor HEVC for the same visual quality. However, this is accompanied by a sharp increase in computational com-
plexity. The emergence of the VVC standard and the increase in video resolution have exceeded the capacity of single-core
architectures. This fact has led researchers to use multicore architectures for the implementation of video standards and to
use the parallelism of these architectures for real-time applications. With the strong growth in both areas, video coding and
multicore architecture, there is a great need for a design methodology that facilitates the exploration of heterogeneous mul-
ticore architectures, which automatically generates optimized code for these architectures in order to reduce time to market.
In this context, this paper aims to use the methodology based on data flow modeling associated with the PREESM software.
This paper shows how the software has been used to model a complete standard VVC video decoder using Parameterized and
Interfaced Synchronous Dataflow (PiSDF) model. The proposed model takes advantage of the parallelism strategies of the
OpenVVC decoder and in particular the tile-based parallelism. Experimental results show that the speed of the VVC decoder
in PiSDF is slightly higher than the OpenVVC decoder handwritten in C/C++ languages, by up to 11% speedup on a 24-core
processor. Thus, the proposed decoder outperforms the state-of-the-art dataflow decoders based on the RVC-CAL model.

Keywords  OpenVVC · Dataflow modeling · Tiles · VVC · PiSDF

1  Introduction

According to Cisco statistics, video content now accounts
for about 82% of the global Internet traffic [1]. This can
be explained by the massive use of social media, YouTube,

video streaming sites such as Netflix, and video conferenc-
ing that has been used extensively since the appearance
of Covid-19 for remote work. Due to this fact, the storage
requirement of the video traffic and its energy footprint are
increasing. Thus, raising the need for a more efficient codec
than High Efficiency Video Coding (HEVC) [2]. In 2020,
a new video coding standard called Versatile Video Coding
(VVC) [3] has been released. This latter offers between 40
and 50% of bitrate reduction compared to its predecessor
HEVC thanks to several enhancement methodologies and
new tools including Multiple Transform Selection (MTS),
Adaptive Loop Filter (ALF), new intra/inter prediction tools,
etc. Those tools improve the efficiency of the encoding pro-
cess, but come with an increase in computational complex-
ity. In order to overcome this problem, a lot of research has
been carried out to reduce the computational complexity on
both encoder and decoder sides. Some of the optimizations
in the VVC standards were based on the use of machine
learning, especially in the encoder parts (intra/inter pre-
diction and partitioning) [4], others explored the parallel-
ism between tasks. In fact, since the advent of Moore’s

 *	 Naouel Haggui
	 nawel.hagui@enis.tn

	 Wassim Hamidouche
	 Wassim.Hamidouche@insa-rennes.fr

	 Fatma Belghith
	 fatmabelghithenis@gmail.com

	 Nouri Masmoudi
	 masmoudi123@gmail.com

	 Jean‑François Nezan
	 Jean-Francois.Nezan@insa-rennes.fr

1	 Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164,
Rennes, 20 Avenue des Buttes de Coesmes, Rennes 35700,
France

2	 Electronics and Information Technology Laboratory (LETI)
of Sfax, Road of Soukra, Sfax 3038, Tunisia

http://orcid.org/0000-0001-7058-9162
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-022-01819-7&domain=pdf

896	 Journal of Signal Processing Systems (2023) 95:895–907

1 3

Law, the industry has been moving towards the creation
of multicore hardware using parallelism strategies to cope
with the increase in computational complexity of modern
applications.

In the VVC standard, there are three main levels of paral-
lelism: the data level, the frame level, and the high-level paral-
lelism including both tile and slice features. The last few years
have seen the emergence of new software decoders compliant
with the VVC standard, like the Fraunhofer Heinrich Hertz
Institute’s decoder called VVdec [5] and the open software
decoder called OpenVVC [6]. These decoders are developed
to offer real time decoding capabilities over different plat-
forms. The OpenVVC decoder use the three levels of parallel-
ism resulting in a decoding performance that overcome both
the VTM MPEG reference software and the VVdec decoder.

Implementing complex signal or image processing appli-
cations, especially video coding applications, on embedded
multicore architectures is challenging, creating the need
for design frameworks and methodologies to accelerate
the design process. In this context, Dataflow modeling has
been used extensively in the generation of efficient multi-
core implementations for embedded systems. Dataflow is a
powerful model to explore data dependencies and to reveal
existing parallelism levels. A single dataflow model gives
the possibility to target several heterogeneous architectures
(multicore, many-core, and Programmable Logic architec-
tures), using efficiently the available parallelism on the hard-
ware and optimizing the memory allocations.

In this context, this paper aims at using the Parallel
and Real-time Embedded Executives Scheduling Method
(PREESM) [7] tool to create a Parameterized and Inter-
faced Synchronous Dataflow (PiSDF) [8] model of the VVC
decoder in order to automatically generate a multicore algo-
rithm optimizing the execution of tiles on multicore architec-
tures. This work investigates the performance of the param-
eterized dataflow model (PiSDF) versus the state-of-the-art
dynamic dataflow models RVC-CAL. As a matter of fact,
RVC-CAL models showed inferior performance compared
to C/C++ decoders, which could be explained by either huge
time spent on scheduling at runtime or by the data movement
overhead. To the best of our knowledge, this is the first work
that presents a dataflow implementation for a full decoder
compliant with the VVC standard.

The rest of the paper is organized as follows. Section 2
gives an overview of dataflow modeling, the VVC standard
and introduces the OpenVVC decoder and its parallelism
strategies, Sect. 3 is dedicated to the related work. Section 4
introduces the proposed dataflow model for the OpenVVC
decoder. In Sect. 5, a comparison between the OpenVVC
decoder and the proposed dataflow model while exploring
tile-level parallelism is provided. Finally, Sect. 6 is devoted
to the conclusion and future works.

2 � Background

2.1 � Dataflow Modeling

A dataflow model is defined as a set of actors exchanging
data information through First In First Out (FIFO)s. The
interactions between actors are regulated by a Model of Com-
putation (MoC) that specifies which scheduling strategies can
be utilized to fire actors. These interactions influence the
system behavior of a dataflow model. In reality, actors are
defined as a collection of firing rules that specify the circum-
stances in which an actor may fire.

Dataflow modeling is a methodology that proved to be
efficient in computing data dependencies, scheduling and
exploring parallelism between the tasks of a process. Moreo-
ver, it gives an additional insight into the application and
facilitates the detection of any missing items or inadequate
details. This last has been used extensively for signal and
image processing applications especially while using Digital
Signal Processor (DSP) architecture. In addition, Dataflow is
widely used for Multiprocessor System-on-Chips (MPSoC)
design and programming [9].

There are several toolchains that can be used to create
a dataflow model such as SynDEx [10], Open RVC-CAL
Compiler (Orcc) [11], and PREESM. In this work, the used
tool is PREESM. Compared to the other tools, PREESM
allows both the automatic scheduling of tasks and the
automatic generation of functional code for heterogene-
ous multicore embedded systems [7]. In essence, it is an
open source rapid prototyping tool that explores the design
space of a target system in a way that minimizes its cost and
ensures compliance with various constraints, most often
latency, throughput, memory and power consumption. In
addition, it boosts pluggable features that fit different tar-
gets [7]. The PREESM scheduling principle is based on fast
scheduling methodology of Kwok [12]. PREESM plugins
are generally focused on latency-dominated systems, i.e.,
systems that ensure throughput constraints are met while
fulfilling the latency constraint [13]. Between two appli-
cation iterations, PREESM uses barriers in order to syn-
chronize all cores of an architecture. Moreover, the code
generation is designed to produce self-timed code [14], i.e.
static code for each core with automated communication
between the cores, cache management and synchronization.
PREESM includes different optimizations, one of them is
an advanced memory optimization based on a memory
exclusion graph [15]. This optimization serves to avoid
the preservation of FIFO memory spaces unnecessary for
the correct system execution. The simulation of PREESM
workflow provides the system designer with a gantt chart
that shows the partitioning of the tasks according to the
used parallel architecture.

897Journal of Signal Processing Systems (2023) 95:895–907	

1 3

2.2 � Overview of VVC Decoder

The decoder side of VVC standard has seen a raise in com-
puting complexity approximately two times higher than
HEVC standard in All Intra (AI) configuration. Figure 1
presents the structure of the VVC decoder. A decoder takes
a bitstream as input and provides a decoded video sequence
as output. The VVC decoder is mainly composed by three
main processes: entropy decoding, block reconstruction,
and the in-loop filters. The entropy decoding is based on
the use of Context Adaptive Binary Arithmetic Coding
(CABAC) [16]. This latter serves at decoding the binary
syntax into syntax elements that feed all other decoder parts.
The block reconstruction that is composed from inter/intra
prediction, inverse transform and quantization is responsible
for constructing the different regions of a frame. In fact, on
the encoder side, a frame is divided into different blocks
based on the use of tools included in the partitioning part
of the encoder. The final step in the decoding process is the
in-loop filters. The filters used in the VVC decoder are the
inverse Luma Mapping with Chroma Scaling (LMCS), the
Deblocking Filter (DBF), the Sample Adaptive Offset (SAO)
filter and the ALF filter. Once a picture is entirely decoded
it will be stored in the Decoded Picture Buffer (DPB) to be
used if needed in the decoding of the next picture (case of
inter prediction). More details about VVC standard could
be found in [17]. There are three possible parallelism levels
in the decoding process, they consist in data level, frame
level and high level parallelism: slices/tiles and Wavefront
Parallel Processing (WPP). Data level is based on the use of
Single Instruction Multiple Data (SIMD) instructions. SIMD
optimizations are generally used in applications that perform
the same operation on multiple data points simultaneously
which means operations that use vectors and matrices. In
video coding field, there are several tasks that could take
benefits from the SIMD instructions such as ALF filter, the
transforms, etc. Data level parallelism has shown its effi-
ciency in minimizing the computational complexity of the

video coding process. Authors in [18] have leveraged the use
of SIMD instructions to minimize the decoding time of the
HEVC decoder. Effectively, the experimental results showed
that the optimized decoder performs more than 4 times faster
than the HM 4.0 decoder. Frame-level parallelism relies on
frames that can be independently encoded/decoded. In this
case, each frame is associated with a thread with a syn-
chronisation module to manage the inter dependencies. In
video coding standards, a frame can be divided into different
regions. Some of these regions are called tiles and slices.
The partitioning of an image into tiles and slices was first
introduced in HEVC [19]. Tiles are rectangular regions of a
frame containing entire CTUs. The prediction dependencies
between tiles boundaries are broken and the entropy decod-
ing is reinitialized for each tile. This fact, enables different
large regions of a frame to be processed independently.

2.3 � OpenVVC Decoder

The OpenVVC decoder has been developed in IETR labo-
ratory at INSA Rennes. The decoder was created based on
the VVC standard and with the use of C programming lan-
guage. It has been compiled as a cross-platform library and
implemented as a dynamic library in FFmpeg player [20].
OpenVVC is capable of real time decoding and supports all
the parallelism levels previously detailed in Sect. 2.2: data
level parallelism, frame level parallelism, and tile parallelism.

The decoding process of the OpenVVC decoder follows
the same process of the VVC decoder. It starts with parsing
the global parameters sets which are the Sequence Param-
eter Set (SPS), Picture Parameter Set (PPS), Picture header
(PH), and Slice header (SH). This process helps gathering
information from the different stages of a frame (slice, tile,
sequence, picture) in order to decode it. After that, block
reconstruction is applied at the CU level. When all CUs in the
CTU are fully reconstructed, the DBF filter is applied at CTU
level. Finally, the SAO, ALF and CC-ALF filters are applied
at a CTU line level. Applying the filters at the CTU lines

Figure 1   VVC decoder block
diagram.

898	 Journal of Signal Processing Systems (2023) 95:895–907

1 3

improves frame-level parallelism in the inter-configuration
compared to processing the in-loop filters after the entire
frame is reconstructed.

Compared to the other available decoders developed
based on the VVC standard such as VTM decoder and the
Fraunhofer’s decoder VVdeC, OpenVVC offers higher
decoding rate with lower memory consumption especially
in AI configuration. More detailed information about
OpenVVC and the most consuming part of the decoding
process could be found in [6].

3 � Related Work

Usually, the most used approaches in creating a parallel algo-
rithm for multicore processors are OpenMP [21], OpenCL [22]
and pthread. The development of decoders using these
approaches requires months of algorithmic development and
then it is necessary to study the parallelization on each of the
target architectures, which can be fast on homogeneous archi-
tectures with shared memories with the use of OpenMP for
example, but much longer on heterogeneous architectures like
FPGA and MPSoC. Besides, these approaches are based on
the use of C/C++ programming languages which have many
shortcomings and are not suitable for hardware design. As
a result, implementing complex signal or image processing
applications, especially video coding applications, on embed-
ded multicore architectures has become increasingly difficult.
Due to this fact, many researchers have focused on creating a
library based on dataflow oriented language CAL [23] for the
video coding components. This library is called Reconfigur-
able Video Coding (RVC) [24]. This framework provides a
new specification formalism for the design of video codecs in
a way that promotes flexibility and reuse [25]. RVC-CAL [26]
actor language has been used in the modeling of several video
coding standards such as MPEG-4 [27] and HEVC [28].
Authors in [25] have demonstrated that using a dataflow model
facilitates code generation for hardware devices.

Studies in [28] and [29] used RVC-CAL dataflow models
in the creation and implementation of a multicore algorithm
for the HEVC decoder. Although the proposed dataflow
model for the HEVC decoder does not exceed the perfor-
mance of other HEVC compliant decoders such as Open-
HEVC [30], the advantages of RVC-CAL remain undeniable.
Indeed, RVC-CAL code is cross-platform, and compilers
such as Orcc [11] and OpenDF [31] can automatically pro-
duce many languages from a single description, including C,
C++, C-HLS, Verilog, etc. Since the creation of the hard-
ware is ultimately complete and the validation of the appli-
cation can be performed in a software context, this capabil-
ity is crucial for hardware developers because it speeds up
prototyping.

Dataflow modeling has also been tested on some parts of the
latest video coding standard VVC and proved to be very effi-
cient. For instance, in [32] a dataflow implementation for MTS
concept has been created. The result showed that with choosing
coarse grain granularity for x86 architecture, the dataflow model
offers a speed-up close to the theoretical result. In [33], a com-
parison between a dataflow implementation for the MTS con-
cept and the OpenMP method showed that, with the use of the
dataflow model, a better speedup was achieved. This evidence
proves that, compared to the state-of-the-art approaches used to
create a multicore algorithm for embedded systems, dataflow
modeling could achieve better performance in a much shorter
development time. In addition, dataflow circuits are necessary
for efficient C-to-circuit translation of any software program,
as they are capable of handling variable latencies and erratic
memory dependencies. Many HLS compilers have included
dataflow modeling to generate an FPGA design in which all
tasks are pipelined and executed concurrently [34, 35].

4 � The Proposed Model

The development of a multicore algorithm such as the OpenVVC
decoder is time-consuming because it requires a great deal of
knowledge of the software and the target architecture. Added to
that, when modifying the target architecture, other constraints
must be taken into account. To reduce time to market, dataflow
modeling is commonly used. It facilitates the mapping of tasks
according to the available cores and the fast generation of a mul-
ticore algorithm. Indeed, dataflow modeling is widely used to
implement an application on a multicore architecture. This stems
from the fact that it is efficient for calculating data dependencies
and scheduling tasks without having a deep knowledge about the
hardware. From this context, this paper aims at studying the effi-
ciency of dataflow modeling in the exploration of tile parallelism.

For the purpose of creating a dataflow model for the
OpenVVC decoder that explores the parallelism between tiles
with the use of PREESM, the following steps must be performed:

1.	 Implement the OpenVVC project as an external library.
2.	 Disable the use of all functions developed using pthread

in the OpenVVC project to explore parallelism between
tiles and between frames.

3.	 Provide the necessary inputs for PREESM. Essentially,
in order to create the dataflow model and create the mul-
ticore algorithm, three elements need to be created first.

(a)	 The algorithm graph: a graph presenting a set of
actors exchanging data through FIFOs and aims
to provide a clear and complete description of the
process. The actor description could be hierarchi-
cal (i.e. an actor could contain other actors). The

899Journal of Signal Processing Systems (2023) 95:895–907	

1 3

algorithm graph is created using a type of data-
flow model known as PiSDF.

(b)	 The architecture graph: the kind of architecture graph
used in PREESM is called System Level Architec-
ture Model (S-LAM). It is a set of cores linked to a
shared memory in order to communicate.

(c)	 The scenario: an item of PREESM which includes
all the information necessary for the execution of
the workflow which is a set of tasks responsible
for the generation of the code, the display of the
Gantt chart and the use of optimizations. The sce-
nario contains the path of the algorithm graph, the
path of the architecture graph, and the execution
time of each actor.

After implementing the OpenVVC as an external library
in PREESM and identifying the functions responsible of
decoding the tiles, an algorithm graph (Fig. 2) is created.
The Fig. 2 presents the global algorithm graph of the pro-
posed model. This last is composed of 18 FIFOs and 12
actors in total. Some actors are responsible for the duplica-
tion or initialization of variables and others for the decoding
process. The latter are the following five actors:

•	 Attach_Stream : this actor serves at associating the bit-
stream to be decoded to the decoder and initializing the
decoder and the dumuxer. Then it will send the informa-
tion about the initialized decoder and dumuxer to the
other actors through the variable ovvc_hdl.

•	 Frame_Informations_Extraction : this actor is responsible
for extracting parts of the bitstream more specifically, the
Network Abstraction Layer (NAL) units. The extracted
information will be sent to the Frame_Decoding actor via
pu variable which is a vector of NAL units.

•	 Frame_Decoding : this actor passes the sub-stream to the
input of the decoder and starts decoding the picture.

•	 Frame_Receiving : this actor polls the decoder in order to
see if the next image in the display order is available and
can leave the decoder, and places the next image in the
display order on the output.

•	 Detach_Stream : this actor closes the file and resets the
dumuxer to zero.

As the tile parallelism is the focus of this paper, the decod-
ing of the picture ( Frame_Decoding actor) itself has been
decomposed into several actors. The Fig. 3 represents the
algorithm graph associated with the actor Frame_Decoding .
The latter is composed of 25 FIFOs and 13 actors in total.
The main actors in this graph are:

•	 Slice_Selection : selects the slices to be decoded.
•	 Tiles_Decoding : decodes the tiles of a frame.
•	 Non_Tiles_Decoding : decodes other types of NAL units

(that don’t contain tiles information).

To ensure the tile parallelism, the tiles actor is duplicated
based on the information provided by the tiles_number
parameter. For example, if the tiles_number is equal to N,
the tiles actor will be duplicated N times and those N tasks
will be executed in parallel. In other words, the duplica-
tion process is done automatically according to the produc-
tion and consumption rate of each actor. If an actor A has
a production rate equal to N for example while actor B has
a consumption rate equal to one, PREESM will duplicate
actor B N times.

5 � Experimental Results

This section presents the experimental setup and the differ-
ent results obtained using the proposed dataflow model in
AI configuration.

5.1 � Experimental Setup

The experiments were performed using PREESM version
3.20.0 on Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz
with 24 cores under Ubuntu 18.04 and using various video
sequences that are detailed in Tables 1, and 2. The video
sequences used are FHD (class B, 1920×1080 pixels) and

Figure 2   PiSDF model for the OpenVVC Decoder.

900	 Journal of Signal Processing Systems (2023) 95:895–907

1 3

UHD (class A, 3840×2160 pixels) included in the Com-
mon Test Conditions (CTC) [36], as these are the sequences
that have the highest resolution and take a long time in the
decoding process. Actually, with the grown complexity of
VVC standards there is a raise of critical issue basically for
high resolution sequences. Moreover, with high resolution
comes high granularity of actors, which is an important
factor to achieve a good performance while using x86 archi-
tecture, as proven in previous works [32, 33]. To be precise,
in [32] a study was made to investigate the effect of the
granularity level on the performance of an application using
the x86 architecture. The study showed that it is important
to use high granularity when using x86 architecture to get a
good result. Based on this study, high resolution sequences
are used so that each actor performs a large number of com-
putations and the synchronization time becomes negligible
compared to the execution time of the actors. In addition,
while decoding a tile, each thread requires its own filter
buffers and local context structure. The main frame buffer
and global context structure, on the other hand, are shared

by all threads, which may result in a buffer overhead. But
since the sizes of the filter buffers and the local context
structure are both small in comparison to the size of the
main image buffer, buffer overhead is assumed to be neg-
ligible for high-resolution sequences [37]. The used video
sequences are encoded with three tile configurations 4 × 3
(four horizontal by three vertical splits), 6 × 2 , and 6 × 4 .
The same encoder configuration, without tiles, is used as
a reference to calculate the BD-Rate objective measure-
ment [38]. The BD-Rate is an objective measure applied
in video compression to compare the bitrate distortion per-
formance or compression efficiency of two different video
codecs or different parameters of the same video codec over
a range of bitrate or quality values. Tables 1 and 2 show
that as the number of tiles increases, there is an increase
in the BD-Rate. Hence, a bitrate overheat at same quality.
In fact, the study of [39] showed that the quality of coding
decreases with the increase of the number of independent
regions in the image. This is due to the fact that intra predic-
tion dependencies across tiles boundaries are broken and
that the entropy coding is initialized at each tile, resulting

Figure 3   The inside of the Frame_Decoding actor.

Table 1   Benchmarks of UHD (3840×2160) sequences used in the exper-
iment.

BD-Rate

Sequence 12 Tiles (6 × 2) 24 Tiles (6 × 4)

DaylightRoad2 0.88% 1.26%
Campfire 0.84% 1.33%
CatRobot 0.91% 1.76%
ParkRunning 0.29% 0.48%
Tango2 1.79% 2.84%
FoodMarket 1.32% 2.13%

Table 2   Benchmarks of FHD (1920x1080) sequences used in the exper-
iment.

BD-Rate

Sequence 12 Tiles (4 × 3) 24 Tiles (6 × 4)

BQTerrace 0.77% 1.27%
Cactus 1.08% 1.79%
BasketballDrive 1.80% 3.08%
MarketPlace 1.10% 1.84%
RitualDance 1.49% 2.45%

901Journal of Signal Processing Systems (2023) 95:895–907	

1 3

in a loss of coding quality compared to the unpartitioned
sequence coding.

In order to provide a fair comparison between the openVVC
decoder and the proposed dataflow model, the frame level par-
allelism is disabled in the original OpenVVC decoder. The
comparison will be made based only on tiles level parallelism.
The bitstreams used in this work are generated with VTM12.0
encoder. The input of an encoder is a configuration file that
contains various information about the sequence to be encoded
such as the number of frames, the type of configuration (AI,
Random Access, Low Delay), etc. In this paper, the configu-
ration file has been modified to allow the decomposition of a
frame into tiles and to set the number of tiles and the location
of their boundaries. Actually, tiles offer flexible classification
of CTUs. Besides, tiles provide an excellent coding efficiency
and a favored correlation of pixels over slices as they do not
have a header information [40]. The performance of both
OpenVVC decoder and the proposed model are assessed at
various bit-rates, obtained with QP values of {22, 27, 32, 37}
following the CTC.

5.2 � Results Analysis

Figures 4 and 5 showcase the speed-up of both the proposed
model and the OpenVVC decoder while using UHD and
FHD sequences encoded with 12 tiles respectively. Results
showed that speed gains of 6 and 7 are achieved using 12
cores for a bitstream consisting of 12 tiles for FHD and UHD
sequences, respectively. For FHD and UHD sequences with
24 tiles, speed gains of 9 and 11 on 24 cores are achieved

respectively as illustrated in Figs. 6 and 7). For the results
obtained using FHD sequences, the speeds of the proposed
model and the OpenVVC decoder shown in Figs. 5 and 7
are not too close using four cores. However, they are closer
using UHD sequences, which can be explained by the fact
that as the resolution of the sequence increases, the actor
has more computational process, so the granularity increases
and the synchronization time becomes negligible compared
to the actor execution time. Ideally, for a fully paralleliz-
able process, a speedup equal to 12 is expected while using
12-core architecture. However, the decoding process is not
100% parallelizable. In reality, many parts of the decoding
process are more complex than decoding a tile and are per-
formed sequentially, making them more time consuming. For
example, according to the study presented in [6], loop filters
account for more than half of the decoding complexity in an
AI configuration. This fact is one of the main reasons that
explain the difference between the theoretical and experi-
mental results, since the loop filters are executed sequentially
after the decoding of a frame. Another factor that explains
the discrepancy between the theoretical case and the obtained
result is the fact that the tiles are not of equal sizes. For exam-
ple, Fig. 8 shows the size inequality between 12 tiles for a
class A sequence. An image is a set of CTUs and the details
of an image change from one pixel to another. Consequently,
the amount of detail in each CTU is different. It is thereby
different for each tile. The decoding time is therefore not the
same for all tiles as shown in Fig. 9. In fact, this figure details
the decoding time in percentage for each tile presented in a
frame of a class B sequence (BQTerrace). This decoding time

Figure 4   Speed-up of the
proposed model and of the
OpenVVC decoder while using
UHD sequences encoded with
12 tiles.

902	 Journal of Signal Processing Systems (2023) 95:895–907

1 3

imbalance between tiles has less effect on UHD sequence
than on FHD sequence as the former’s frame size is larger
and it grows with the number of tile contained in the frame.

Although the experimental result of the proposed data-
flow model is very close to that of the OpenVVC decoder
and does not significantly outperform it, dataflow mod-
eling remains a design methodology of great importance.

The state-of-the-art approaches used for the creation of
a multicore algorithm necessitate a lot of development
time compared to dataflow modeling as they require deep
knowledge of both hardware and software. For example,
as real-time codecs typically offer fine-grain parallel-
ism, architectures like Field Programmable Gate Arrays
(FPGA) are perfect targets for implementation. However,

Figure 5   Speed-up of the
proposed model and of the
OpenVVC decoder while using
FHD sequences encoded with
12 tiles.

Figure 6   Speed-up of the
proposed model and of the
OpenVVC decoder while using
UHD sequences encoded with
24 tiles.

903Journal of Signal Processing Systems (2023) 95:895–907	

1 3

the programming languages used to program FPGA, such
as VHDL or Verilog, require digital design expertise and
result in an increase in time to market [41]. In a nutshell,
using dataflow modeling saves development time. Also,
compared to other approaches, dataflow modeling presents
a suitable framework that allows switching from one archi-
tecture to another in a flexible way, as a dataflow model

can target different architectures. Indeed, a dataflow model
could target both shared and distributed memory architec-
tures without changing the developed model. However, in
the case of the OpenVVC decoder that was developed using
pthread and with the knowledge of software and hardware,
there is a possibility of presenting memory storage problems
when switching from one architecture to another. Indeed,

Figure 7   Speed-up of the
proposed model and of the
OpenVVC decoder while using
FHD sequences encoded with
24 tiles.

Figure 8   6 × 2 Tiles partition-
ing for Class A ( 3840 × 2160).

904	 Journal of Signal Processing Systems (2023) 95:895–907

1 3

due to the large number of memory allocations included in
OpenVVC, portability on systems with heterogeneous archi-
tecture can be challenging.

One other major result up for debate is the time spent
by the dataflow decoder in the decoding process on a sin-
gle core. In fact, previous dataflow models for decoders
have shown promising performance on multicore, but on a
single core, the performance is degraded compared to the
reference decoders. In [29] a DSP based decoder conform-
ing to the HEVC standard has been implemented using the
RVC-CAL model. The presented RVC-CAL decoder is 50%
less efficient than HM9.0 and five times less efficient than
OpenHEVC, while using a single core. Similarly, in [28], a
dataflow model for a full decoder that explores parallelism
between the YUV component showed a decrease in framer-
ate (FPS) compared to the reference, and the OpenHEVC
decoder outperformed both the reference and the presented
model while using a single core architecture. Nevertheless,

the PiSDF model presented for the OpenVVC decoder
outperformed the reference software decoder (VTM12.0)
and has a similar decoding time as OpenVVC on mono-
core as shown in Table 3. This result proves the efficiency
of the PiSDF model compared to the decoder models that
have been implemented using RVC-CAL. In fact, dynamic
dataflow models such as RVC-CAL perform scheduling at
runtime which slows down the decoding process. However,
parameterized models such as PiSDF used in this work are
predictable, allowing optimizations at compile time. Conse-
quently, the scheduling time is negligible compared to the
decoding process.

6 � Conclusion

This paper investigates the efficiency of using dataflow
modeling in creating a model for a complete decoder based
on the VVC standard. The tool used to create the dataflow
model is called PREESM. This tool allows the automatic
scheduling of tasks according to the number of used cores
and the automatic generation of multicore algorithms. The
proposed model is created to make explicit and explore the
parallelism between tiles that are a rectangular region of
a frame encompassing entire CTUs. Parallel tile decoding
is allowed due to the fact that prediction dependencies
between tile boundaries are broken and entropy decod-
ing is initialized for each tile. The results showed that,
unlike the state-of-the-art dataflow decoders based on
the RVC-CAL model, the proposed model still performs

Figure 9   Per tile decoding time
in percentage for a frame of
BQTerrace sequence.

Table 3   Decoding time on single core of UHD sequences, QP = 22.

Sequence Decoding time (s)

VTM12.0 OpenVVC Dataflow model

DaylightRoad2 42.62 ± 0.205 15.39 ± 0.375 15.10 ± 0.042
Campfire 34.32 ± 0.571 11.55 ± 0.405 11.65 ± 0.67
CatRobot 34.65 ± 0.265 11.15 ± 0.091 10.95 ± 0.04
ParkRunning 35.86 ± 0.078 12.97 ± 0.078 12.71 ± 0.046
Tango2 23.66 ± 0.054 8.32 ± 0.053 8.07 ± 0.082
FoodMarket 21.49 ± 0.06 7.32 ± 0.059 7.19 ± 0.037

905Journal of Signal Processing Systems (2023) 95:895–907	

1 3

well on a single-core architecture compared to decoders
developed with C/C++ languages. In addition, it achieves
a competitive speed-up to that of the OpenVVC decoder.
Whereas the speed improvement is not very significant,
the relevance dataflow comes from the fact that one model
can target different architectures and dataflow modeling is
an effective framework that facilitates the transition from
software to hardware. Moreover, creating a multicore algo-
rithm using dataflow modeling requires a shorter develop-
ment time compared to state-of-the-art approaches such
as OpenMP and OpenCL. In the near future, we aim to
adopt task-based code generation and execution, a method
proposed in [42], to automatically balance the differences
of tile decoding times and improve our proposed model.
It is also planned to improve the proposed model to sup-
port frame-level parallelism. Furthermore, it is planned to
implement the proposed dataflow model on heterogeneous
architectures such as ARM BIGlittle, FPGA, and Kalray.

Acknowledgements  This work is supported by the France Campus,
and within a co-supervised thesis between the Institue of Electronics
and Telecommunications (IETR) of Rennes, France, and the Labo-
ratory of Electronics and Information Technology (LETI) of Sfax,
Tunisia.

Author Contributions  N. Haggui designed, coordinated this research,
drafted the manuscript and conducted the experiments and data analy-
sis. W.Hamidouche participated in the conceptualization, methodol-
ogy, writing, revision, editing, assisted in data analysis and partici-
pated in the coordination of the research, F.Belghith, N.Masmoudi and
J.F.Nezan assisted in the data analysis, participated in the coordination
of the research, supervision, writing, revision and editing. The authors
read and approved the final manuscript.

Funding  This work was supported by the MEAE, MESRI (France),
MESRS (Tunisia), MESRS (Algeria), MEN, CNRST (Morocco), through
the Hubert Curien Partnerships (PHC) Maghreb 2021, No 45988WG
(Eco-VVC project).

Data Availability  The data will be made publicly available upon accept-
ance of the article.

Declarations 

Ethics Approval and Consent to Participate  Not applicable.

Conflicts of Interest  The authors declare that they have no conflict of
interest.

References

	 1.	 Cisco, U. (2020). Cisco annual internet report (2018–2023) white
paper. Cisco: San Jose, CA, USA.

	 2.	 Sullivan, G. J., Ohm, J.-R., Han, W.-J., & Wiegand, T. (2012).
Overview of the high efficiency video coding (HEVC) standard.
IEEE Transactions on Circuits and Systems for Video Technology,
22(12), 1649–1668.

	 3.	 Hamidouche, W., Biatek, T., Abdoli, M., Francois, E., Pescador,
F., Radosavljevic, M., Menard, D., & Raulet, M. (2022). Versatile

video coding standard: A review from coding tools to consumers
deployment. IEEE Consumer Electronics Magazine.

	 4.	 Li, T., Xu, M., Tang, R., Chen, Y., & Xing, Q. (2021). Deep-
QTMT: A deep learning approach for fast QTMT-based CU parti-
tion of intra-mode VVC. IEEE Transactions on Image Processing,
30, 5377–5390.

	 5.	 Wieckowski, A., Hege, G., Bartnik, C., Lehmann, C., Stoffers, C.,
Bross, B., & Marpe, D. (2020). Towards a live software decoder
implementation for the upcoming versatile video coding (VVC)
codec. In 2020 IEEE International Conference on Image Process-
ing (ICIP) (pp. 3124–3128). IEEE.

	 6.	 Amestoy, T., Cabarat, P.-l., Gautier, G., Hamidouche, W., &
Menard, D. (2022). OpenVVC: A lightweight software decoder for
the versatile video coding standard. Preprint retrieved from http://​
arxiv.​org/​abs/​2205.​12217

	 7.	 Pelcat, M., Desnos, K., Heulot, J., Guy, C., Nezan, J.-F., & Aridhi,
S. (2014). PREESM: A dataflow-based rapid prototyping frame-
work for simplifying multicore DSP programming. In 2014 6th
European Embedded Design in Education and Research Confer-
ence (EDERC) (pp. 36–40). IEEE.

	 8.	 Desnos, K. & Heulot, J. (2014). PISDF: Parameterized & inter-
faced synchronous dataflow for MPSoCs runtime reconfiguration.
In 1st Workshop on Methods and Tools for Dataflow Program-
ming (METODO).

	 9.	 Aguilar, M. A., Leupers, R., Ascheid, G., & Murillo, L. G. (2016).
Automatic parallelization and accelerator offloading for embed-
ded applications on heterogeneous MPSoCs. In Proceedings of
the 53rd Annual Design Automation Conference (pp. 1–6).

	10.	 Grandpierre, T., Lavarenne, C., & Sorel, Y. (1999). Optimized
rapid prototyping for real-time embedded heterogeneous multi-
processors. In Proceedings of the Seventh International Workshop
on Hardware/Software Codesign, CODES ’99 (pp. 74–78). New
York, NY, USA. Association for Computing Machinery.

	11.	 Yviquel, H., Lorence, A., Jerbi, K., Cocherel, G., Sanchez, A., &
Raulet, M. (2013). ORCC: Multimedia development made easy.
In Proceedings of the 21st ACM International Conference on Mul-
timedia (pp. 863–866).

	12.	 Yu-Kwong, K. (1997). High-performance algorithms for compile-
time scheduling of parallel processors. The Hong Kong University
of Science and Technology in Partial Fulfillment of the Require-
ments for the Degree of Doctor of Philosophy in Computer Sci-
ence Hong Kong.

	13.	 Ghamarian, A. H., Geilen, M. C., Stuijk, S., Basten, T., Theelen,
B. D., Mousavi, M. R., Moonen, A. J., & Bekooij, M. J. (2006).
Throughput analysis of synchronous data flow graphs. In Sixth
International Conference on Application of Concurrency to Sys-
tem Design (ACSD’06) (pp. 25–36). IEEE.

	14.	 Sriram, S., & Bhattacharyya, S. S. (2018). Embedded multiproces-
sors: Scheduling and synchronization. CRC Press.

	15.	 Desnos, K., Pelcat, M., Nezan, J.-F., & Aridhi, S. (2013). Pre-
and post-scheduling memory allocation strategies on MPSoCs.
In Proceedings of the 2013 Electronic System Level Synthesis
Conference (ESLsyn) (pp. 1–6). IEEE.

	16.	 Sze, V., & Budagavi, M. (2012). High throughput CABAC entropy
coding in HEVC. IEEE Transactions on Circuits and Systems for
Video Technology, 22(12), 1778–1791.

	17.	 Bossen, F., Sühring, K., Wieckowski, A., & Liu, S. (2021). VVC
complexity and software implementation analysis. IEEE Trans-
actions on Circuits and Systems for Video Technology, 31(10),
3765–3778.

	18.	 Yan, L., Duan, Y., Sun, J., & Guo, Z. (2012). Implementation of
HEVC decoder on x86 processors with simd optimization. In 2012
Visual Communications and Image Processing (pp. 1–6). IEEE.

	19.	 Misra, K., Segall, A., Horowitz, M., Xu, S., Fuldseth, A., &
Zhou, M. (2013). An overview of tiles in HEVC. IEEE Journal
of Selected Topics in Signal Processing, 7(6), 969–977.

http://arxiv.org/abs/2205.12217
http://arxiv.org/abs/2205.12217

906	 Journal of Signal Processing Systems (2023) 95:895–907

1 3

	20.	 FFMPEG: Open source and cross-platform multimedia library.
Retrieved January 2022, from http://​www.​ffmpeg.​org

	21.	 Dagum, L., & Menon, R. (1998). OPENMP: An industry standard
API for shared-memory programming. IEEE Computational Sci-
ence and Engineering, 5(1), 46–55.

	22.	 Stone, J. E., Gohara, D., & Shi, G. (2010). OpenCL: A paral-
lel programming standard for heterogeneous computing systems.
Computing in Science & Engineering, 12(3), 66.

	23.	 Eker, J., & Janneck, J. (2003). CAL language report: Specification
of the CAL actor language. December.

	24.	 Bhattacharyya, S. S., Eker, J., Janneck, J. W., Lucarz, C., Mattavelli,
M., & Raulet, M. (2011). Overview of the MPEG reconfigurable
video coding framework. Journal of Signal Processing Systems,
63(2), 251–263.

	25.	 Abid, M., Jerbi, K., Raulet, M., Déforges, O., & Abid, M. (2013).
System level synthesis of dataflow programs: HEVC decoder case
study. In Proceedings of the 2013 Electronic System Level Synthe-
sis Conference (ESLsyn) (pp. 1–6). IEEE.

	26.	 Wipliez, M., Roquier, G., & Nezan, J.-F. (2011). Software code
generation for the RVC-CAL language. Journal of Signal Process-
ing Systems, 63(2), 203–213.

	27.	 Bezati, E., Mattavelli, M., & Raulet, M. (2010). RVC-CAL data-
flow implementations of MPEG AVC/H. 264 CABAC decoding.
In 2010 Conference on Design and Architectures for Signal and
Image Processing (DASIP) (pp. 207–213). IEEE.

	28.	 Jerbi, K., Yviquel, H., Sanchez, A., Renzi, D., De Saint Jorre, D.,
Alberti, C., Mattavelli, M., & Raulet, M. (2017). On the development
and optimization of HEVC video decoders using high-level dataflow
modeling. Journal of Signal Processing Systems, 87(1), 127–138.

	29.	 Chavarrías, M., Pescador, F., Garrido, M. J., Juarez, E., & Raulet,
M. (2013). A DSP-based HEVC decoder implementation using an
actor language dataflow model. IEEE Transactions on Consumer
Electronics, 59(4), 839–847.

	30.	 IETR/VAADER (2016). Open source HEVC decoder (Open-
HEVC). Retrieved December 2021, from https://​github.​com/​
OpenH​EVC

	31.	 Bhattacharyya, S. S., Brebner, G., Janneck, J. W., Eker, J., Von
Platen, C., Mattavelli, M., & Raulet, M. (2009). OpenDF: a data-
flow toolset for reconfigurable hardware and multicore systems.
ACM SIGARCH Computer Architecture News, 36(5), 29–35.

	32.	 Haggui, N., Belghith, F., Hamidouche, W., Masmoudi, N., & Nezan,
J.-F. (2021). Multiple transform selection concept modeling and
implementation using interface based SDF graphs. In Workshop on
Design and Architectures for Signal and Image Processing (14th
edition) (pp. 60–67).

	33.	 Haggui, N., Belghith, F., Hamidouche, W., Masmoudi, N., &
Nezan, J.-F. (2022). Multiple transform selection concept mod-
eling and implementation using dynamic and parameterized data-
flow graphs. Journal of Signal Processing Systems, 1–12.

	34.	 Amiri, P., Pérard-Gayot, A., Membarth, R., Slusallek, P., Leißa, R.,
& Hack, S. (2021). Flower: A comprehensive dataflow compiler for
high-level synthesis. In 2021 International Conference on Field-
Programmable Technology (ICFPT) (pp. 1–9). IEEE.

	35.	 Josipović, L., Sheikhha, S., Guerrieri, A., Ienne, P., & Cortadella, J.
(2021). Buffer placement and sizing for high-performance dataflow
circuits. ACM Transactions on Reconfigurable Technology and Sys-
tems (TRETS), 15(1), 1–32.

	36.	 Boyce, J., Suehring, K., Li, X., & Seregin, V. (2018). JVET common
test conditions and software reference configurations. In Document
JVET-J1010.

	37.	 Amestoy, T. (2021). Optimisation du codec VVC basé sur la réduc-
tion de complexité et le traitement parallèle.

	38.	 Bjontegaard, G. (2001). Calculation of average PSNR differences
between RD-curves. VCEG-M33.

	39.	 Chi, C. C., Alvarez-Mesa, M., Juurlink, B., Clare, G., Henry, F.,
Pateux, S., & Schierl, T. (2012). Parallel scalability and efficiency

of HEVC parallelization approaches. EEE Transactions on Circuits
and Systems for Video Technology, 22(12), 1827–1838.

	40.	 Abu Taha, M., Hamidouche, W., Sidaty, N., Viitanen, M., Vanne, J.,
El Assad, S., & Déforges, O. (2020). Privacy protection in real time
HEVC standard using chaotic system. Cryptography, 4(2), 18.

	41.	 Abid, M., Jerbi, K., Raulet, M., Déforges, O., & Abid, M. (2018).
Efficient system-level hardware synthesis of dataflow programs
using shared memory based FIFO. Journal of Signal Processing
Systems, 90(1), 127–144.

	42.	 Georgakarakos, G., Kanur, S., Lilius, J., & Desnos, K. (2017). Task-
based execution of synchronous dataflow graphs for scalable mul-
ticore computing. In 2017 IEEE International Workshop on Signal
Processing Systems (SiPS) (pp. 1–6). IEEE.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and
applicable law.

Naouel Haggui  was born in
Kasserine, Tunisia, in 1995. She
received the electrical engineering
degree from the National Engi-
neering School of Sfax (ENIS),
Tunisia in 2019 Since 2020, she
has joined the Electronics and
Information Technology Labora-
tory (LETI), Sfax and the Institute
of Electronics and Telecommuni-
cations of Rennes (IETR) where
she is currently a PhD student. Her
research interests include video
coding, dataflow modelisation and
hardware implementation using
embedded multi-core platforms.

Wassim Hamidouche  received Mas-
ter’s and Ph.D. degrees both in
Image Processing from the Univer-
sity of Poitiers (France) in 2007 and
2010, respectively. From 2011 to
2013, he was a junior scientist in
the video coding team of Canon
Research Center in Rennes
(France). He was a post-doctoral
researcher from Apr. 2013 to Aug.
2015 with VAADER team of IETR
where he worked under collabora-
tive project on HEVC video stand-

ardisation. Since Sept. 2015 he is an Associate Professor at INSA Rennes
and a member of the VAADER team of IETR Lab. He has joined the
Advanced Media Content Lab of b-com IRT Research Institute as an aca-
demic member in Sept. 2017. His research interests focus on video coding
and multimedia security. He is the author/coauthor of more than one hundred
and forty papers at journals and conferences in image processing, two MPEG
standards, three patents, several MPEG contributions, public datasets and
open source software projects.

http://www.ffmpeg.org
https://github.com/OpenHEVC
https://github.com/OpenHEVC

907Journal of Signal Processing Systems (2023) 95:895–907	

1 3

Fatma Belghith  was born in Sfax,
Tunisia, in 1988. She received
her degree in Electrical Engi-
neering from the National
School of Engineering (ENIS),
Sfax, Tunisia, in 2012. She
received her ph.D degree in
Electronic Engineering in 2016.
She is currently an assistant pro-
fessor at the faculty of sciences
and techniques of Sidi Bouzid
(Tunisia) Her current research
interests include video coding
with emphasis on HEVC stand-
ard and beyond, hardware imple-

mentation using FPGA and embedded systems technology.

Nouri Masmoudi  was born in Sfax,
Tunisia, in 1955. He received elec-
trical engineering degree from the
Faculty of Sciences and Techniques
- Sfax, Tunisia, in 1982, the DEA
degree from the National Institute
of Applied Sciences-Lyon and
University Claude Bernard-Lyon,
France in 1984. From 1986 to
1990, he prepared his thesis at the
laboratory of Power Electronics
(LEP) at the National School
Engineering of Sfax (ENIS). He
received his PhD degree from the
National School Engineering of
Tunis (ENIT), Tunisia in 1990.
From 1990 to 2000, he was an

assistant professor at the electrical engineering department -ENIS. Since
2000, he has been an associate professor and head of the group ‘Circuits and
Systems’ in the Laboratory of Electronics and Information Technology.
Since 2003, He is responsible for the Electronic Master Program at ENIS.

His research activities have been devoted to several topics: Design, Telecom-
munication, Embedded systems and Information technology. Video Coding
(Motion Estimation, Mode Decision, H.264 Standard, complexity reduction
of the VVC standard using deep learning, Implementation of the VVC trans-
form unit), Image Processing (Wavelet Image Compression, Subband Image
Coding, Image Interpolation, Denoising).

Pr. Jean‑François Nezan  is a Profes-
sor at the National Institute of
Applied Sciences (INSA), Rennes
Scientific and Technical University
and the “Institut d’Electronique et
des Technologies du numéRique de
Rennes” (IETR). He is the leader
of the VAADER team (Video
Analysis and Architecture Design
for Embedded Resources). He is
coauthor or coeditor of more than
100 technical articles including 1
Book, 2 Book chapters, 23 publica-
tions in International Journals
and 2 patents. He supervised 17
defended PhDs and supervises 5
PhDs. J-F. NEZAN is involved in
the French research society “GDR
ISIS” in the C theme entitled “Ade-

quation Algorithm Architecture” and the European Network of Excellence
on High Performance and Embedded Architecture and Compilation
(HiPEAC). He participated to the setting-up and the management of 5
founded national projects including the COMPA project he led, 1 European
project and 10 research agreements with industrial partners. His research
focuses on new hardware/software codesign methodologies involving data-
flow models in the computing continuum, from embedded to heterogeneous
low-power high-performance computing systems. In that context, he studies
algorithms and implementations of Signal Processing and Machine Learning
algorithms (SPML) in several domains including video compression, com-
puter vision and astronomy.

	OpenVVC Decoder Parameterized and Interfaced Synchronous Dataflow (PiSDF) Model: Tile Based Parallelism
	Abstract
	1 Introduction
	2 Background
	2.1 Dataflow Modeling
	2.2 Overview of VVC Decoder
	2.3 OpenVVC Decoder

	3 Related Work
	4 The Proposed Model
	5 Experimental Results
	5.1 Experimental Setup
	5.2 Results Analysis

	6 Conclusion
	Acknowledgements
	References

