Skip to main content
Log in

A 4\(\mu\)W Low-Power Audio Processor System for Real-Time Jaw Movements Recognition in Grazing Cattle

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Precision livestock farming consists of technological tools and techniques to improve livestock management. Proper detection and classification of jaw movement (JM) events are indispensable for the estimation of dry matter intake, detection of health problems, and flag the onset of estrus, among other information. The analysis of acoustic signals is one of the most accepted ways to monitor the feeding behavior of free-grazing cattle. Different acoustic methods have been developed for recognizing JM-events in recent years. However, their operation is limited to off-line analysis on a personal computer. The lack of on-line acoustic monitoring systems is associated with the challenging operation requirements (low-power consumption, autonomy, portability, robustness and non-intrusive on the animal). In this paper, a fixed-point variant of the chew-bite energy-based algorithm is presented. This algorithm is implemented on a new low-power audio processor system for real-time recognition of JM-events. The system includes a Nanocontroller processor, which is always-on and detects JM-events; and a second transport-triggered architecture (TTA) based processor, which is mainly in power-down and classifies JM-events. The results demonstrate that the proposed fixed-point JM-events recognizer achieves a recognition rate of 91.4% and 90.2% in noiseless and noisy conditions, respectively. The recognition rate increases by 6.1% regarding a previous reference on-line system. Moreover, the proposed audio processor system chip consumes 4 μW on average, i.e., only 2.3% of the power of an always-on TTA-based processor system for the same audio sequence. An exemplary implementation of the proposed system in a 65 nm low-leakage CMOS technology is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Availability of Data and Material

The authors declare that all relevant evaluation data are available in the figures and tables within the article. The generated and analyzed datasets are available from the corresponding author on reasonable request.

References

  1. Berckmans, D. (2017). General introduction to precision livestock farming. Animal Frontiers, 7(1), 6–11.

    Article  Google Scholar 

  2. Michie, C., Andonovic, I., Davison, C., Hamilton, A., Tachtatzis, C., Jonsson, N., Duthie, C.-A., Bowen, J., & Gilroy, M. (2020). The internet of things enhancing animal welfare and farm operational efficiency. Journal of Dairy Research, 87(S1), 20–27.

    Article  Google Scholar 

  3. González, L., Tolkamp, B., Coffey, M., Ferret, A., & Kyriazakis, I. (2008). Changes in feeding behavior as possible indicators for the automatic monitoring of health disorders in dairy cows. Journal of Dairy Science, 91(3), 1017–1028.

    Article  Google Scholar 

  4. Mahmud, M. S., Zahid, A., Das, A. K., Muzammil, M. & Khan, M. U. (2021). A systematic literature review on deep learning applications for precision cattle farming. Computers and Electronics in Agriculture, 187, 106313. https://doi.org/10.1016/j.compag.2021.106313

  5. Chen, C., Zhu, W. & Norton, T. (2021). Behaviour recognition of pigs and cattle: journey from computer vision to deep learning. Computers and Electronics in Agriculture, 187, 106255.

  6. Becker, T., Kluge, M., Schalk, J., Tiplady, K., Paget, C., Hilleringmann, U., & Otterpohl, T. (2009). Autonomous sensor nodes for aircraft structural health monitoring. IEEE Sensors Journal, 9(11), 1589–1595.

    Article  Google Scholar 

  7. Aquilani, C., Confessore, A., Bozzi, R., Sirtori, F. & Pugliese, C. (2022). Review: Precision livestock farming technologies in pasture-based livestock systems. Animal, 16(1), 100429. https://doi.org/10.1016/j.animal.2021.100429

  8. Kilgour, R. J. (2012). In pursuit of “normal’’: A review of the behaviour of cattle at pasture. Applied Animal Behaviour Science, 138(1–2), 1–11.

    Article  Google Scholar 

  9. Augustine, D. J., & Derner, J. D. (2013). Assessing herbivore foraging behavior with GPS collars in a semiarid grassland. Sensors, 13(3), 3711–3723.

    Article  Google Scholar 

  10. Pavlovic, D., Czerkawski, M., Davison, C., Marko, O., Michie, C., Atkinson, R., Crnojevic, V., Andonovic, I., Rajovic, V., Kvascev, G., & Tachtatzis, C. (2022). Behavioural classification of cattle using neck-mounted accelerometer-equipped collars. Sensors, 22(6), 2323.

    Article  Google Scholar 

  11. Rodrigues, J. P. P., Pereira, L. G. R., do Carmo Diniz Neto, H., Lombardi, M. C., de Assis Lage, C. F., Coelho, S. G., Sacramento, J. P., Machado, F. S., Tomich, T. R., Maurício, R. M. & Campos, M. M. (2019). Technical note: Evaluation of an automatic system for monitoring rumination time in weaning calves. Livestock Science, 219, 86–90. https://doi.org/10.1016/j.livsci.2018.11.017

  12. Sakai, K., Oishi, K., Miwa, M., Kumagai, H. & Hirooka, H. (2019). Behavior classification of goats using 9-axis multi sensors: the effect of imbalanced datasets on classification performance. Computers and Electronics in Agriculture, 166, 105027.

  13. Chen, G., Li, C., Guo, Y., Shu, H., Cao, Z. & Xu, B. (2022). Recognition of cattle’s feeding behaviors using noseband pressure sensor with machine learning. Frontiers in Veterinary Science, 9.

  14. Cabezas, J., Yubero, R., Visitación, B., Navarro-García, J., Algar, M. J., Cano, E. L., & Ortega, F. (2022). Analysis of accelerometer and GPS data for cattle behaviour identification and anomalous events detection. Entropy, 24(3), 336.

    Article  Google Scholar 

  15. Galli, J., Cangiano, C., Pece, M., Larripa, M., Milone, D., Utsumi, S., & Laca, E. (2018). Monitoring and assessment of ingestive chewing sounds for prediction of herbage intake rate in grazing cattle. Animal, 12(5), 973–982. https://doi.org/10.1017/S1751731117002415

    Article  Google Scholar 

  16. Galli, J. R., Cangiano, C. A., Milone, D. H., & Laca, E. A. (2011). Acoustic monitoring of short-term ingestive behavior and intake in grazing sheep. Livestock Science, 140(1), 32–41. https://doi.org/10.1016/j.livsci.2011.02.007

    Article  Google Scholar 

  17. Ungar, E. D., Ravid, N., Zada, T., Ben-Moshe, E., Yonatan, R., Baram, H., & Genizi, A. (2006). The implications of compound chew-bite jaw movements for bite rate in grazing cattle. Applied Animal Behaviour Science, 98(3–4), 183–195.

    Article  Google Scholar 

  18. Beauchemin, K. A. (1991). Ingestion and mastication of feed by dairy cattle. Veterinary Clinics of North America: Food Animal Practice, 7(2), 439–463. https://doi.org/10.1016/S0749-0720(15)30794-5

    Article  Google Scholar 

  19. Chelotti, J. O., Vanrell, S. R., Rau, L. S. M., Galli, J. R., Planisich, A. M., Utsumi, S. A., Milone, D. H., Giovanini, L. L. & Rufiner, H. L. (2020). An online method for estimating grazing and rumination bouts using acoustic signals in grazing cattle. Computers and Electronics in Agriculture, 173, 105443.

  20. Martinez-Rau, L. S., Chelotti, J. O., Vanrell, S. R., Galli, J. R., Utsumi, S. A., Planisich, A. M., Rufiner, H. L. & Giovanini, L. L. (2022). A robust computational approach for jaw movement detection and classification in grazing cattle using acoustic signals. Computers and Electronics in Agriculture, 192, 106569. https://doi.org/10.1016/j.compag.2021.106569

  21. Deniz, N. N., Chelotti, J. O., Galli, J. R., Planisich, A. M., Larripa, M. J., Rufiner, H. L., & Giovanini, L. L. (2017). Embedded system for real-time monitoring of foraging behavior of grazing cattle using acoustic signals. Computers and Electronics in Agriculture, 138, 167–174.

    Article  Google Scholar 

  22. Martinez Rau, L. S., Deniz, N. N., Chelotti, J. O., Giovanini, L. L. & Kler, P. A. (2018). Acoustic real-time sensor for ingestive behaviour of grazing cattle. IX Congreso de Microelectrónica Aplicada (UEA2018). Universidad Nacional de Catamarca.

  23. Riaboff, L., Shalloo, L., Smeaton, A. F., Couvreur, S., Madouasse, A. & Keane, M. T. (2022). Predicting livestock behaviour using accelerometers: a systematic review of processing techniques for ruminant behaviour prediction from raw accelerometer data. Computers and Electronics in Agriculture, 192, 106610.

  24. Giovanetti, V., Cossu, R., Molle, G., Acciaro, M., Mameli, M., Cabiddu, A., Serra, M., Manca, C., Rassu, S., Decandia, M. & Dimauro, C. (2020). Prediction of bite number and herbage intake by an accelerometer-based system in dairy sheep exposed to different forages during short-term grazing tests. Computers and Electronics in Agriculture, 175, 105582. https://doi.org/10.1016/j.compag.2020.105582

  25. Ding, L., Lv, Y., Jiang, R., Zhao, W., Li, Q., Yang, B., Yu, L., Ma, W., Gao, R., & Yu, Q. (2022). Predicting the feed intake of cattle based on jaw movement using a triaxial accelerometer. Agriculture, 12(7), 899.

    Article  Google Scholar 

  26. Li, C., Tokgoz, K. K., Fukawa, M., Bartels, J., Ohashi, T., Takeda, K., & Ito, H. (2021). Data augmentation for inertial sensor data in CNNs for cattle behavior classification. IEEE Sensors Letters, 5(11), 1–4. https://doi.org/10.1109/LSENS.2021.3119056

    Article  Google Scholar 

  27. Werner, J., Leso, L., Umstatter, C., Niederhauser, J., Kennedy, E., Geoghegan, A., Shalloo, L., Schick, M., & O’Brien, B. (2018). Evaluation of the RumiWatchSystem for measuring grazing behaviour of cows. Journal of Neuroscience Methods, 300, 138–146. https://doi.org/10.1016/j.jneumeth.2017.08.022

    Article  Google Scholar 

  28. Rombach, M., Südekum, K.-H., Münger, A., & Schori, F. (2019). Herbage dry matter intake estimation of grazing dairy cows based on animal, behavioral, environmental, and feed variables. Journal of Dairy Science, 102(4), 2985–2999. https://doi.org/10.3168/jds.2018-14834

    Article  Google Scholar 

  29. Gregorini, P., Dela Rue, B., Pourau, M., Glassey, C., & Jago, J. (2013). A note on rumination behavior of dairy cows under intensive grazing systems. Livestock Science, 158(1), 151–156. https://doi.org/10.1016/j.livsci.2013.10.012

    Article  Google Scholar 

  30. Chelotti, J. O., Vanrell, S. R., Milone, D. H., Utsumi, S. A., Galli, J. R., Rufiner, H. L., & Giovanini, L. L. (2016). A real-time algorithm for acoustic monitoring of ingestive behavior of grazing cattle. Computers and Electronics in Agriculture, 127, 64–75.

    Article  Google Scholar 

  31. Chelotti, J. O., Vanrell, S. R., Galli, J. R., Giovanini, L. L., & Rufiner, H. L. (2018). A pattern recognition approach for detecting and classifying jaw movements in grazing cattle. Computers and Electronics in Agriculture, 145, 83–91.

    Article  Google Scholar 

  32. Shresthamali, S., Kondo, M., & Nakamura, H. (2017). Adaptive power management in solar energy harvesting sensor node using reinforcement learning. ACM Transactions on Embedded Computing Systems (TECS), 16(5s), 1–21.

    Article  Google Scholar 

  33. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer Verlag.

  34. Weißbrich, M., Blume, H. & Payá-Vayá, G. (2022). A silicon-proof controller system for flexible ultra-low-power energy harvesting platforms. 2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST) (pp. 1–6).

  35. Weißbrich, M. & Payá-Vayá, G. (2022). Nanocontroller: a minimal and flexible processor architecture for ultra-low-power always-on system state controllers. Embedded Computer Systems: Architectures, Modeling, and Simulation (pp. 103–119). Springer International Publishing, Cham.

  36. Jääskeläinen, P., Viitanen, T., Takala, J. & Berg, H. (2017). HW/SW Co-design Toolset for Customization of Exposed Datapath Processors (pp. 147–164). Springer International Publishing. https://doi.org/10.1007/978-3-319-49679-5_8

  37. Corporaal, H. (1997). Microprocessor architectures - from VLIW to TTA. John Wiley & Sons.

  38. Jääskeläinen, P., Tervo, A., Payá-Vayá, G., Viitanen, T., Behmann, N., Takala, J. & Blume, H. (2018). Transport-triggered soft cores. 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) (pp. 83–90). IEEE.

  39. Jääskeläinen, P., Kultala, H., Viitanen, T., & Takala, J. (2015). Code density and energy efficiency of exposed datapath architectures. Journal of Signal Processing Systems, 80(1), 49–64.

    Article  Google Scholar 

  40. Panda, P. R., Silpa, B., Shrivastava, A. & Gummidipudi, K. (2010). Power-efficient system design. Springer Science & Business Media, New York London.

  41. Vanrell, S. R., Chelotti, J. O., Galli, J. R., Utsumi, S. A., Giovanini, L. L., Rufiner, H. L., & Milone, D. H. (2018). A regularity-based algorithm for identifying grazing and rumination bouts from acoustic signals in grazing cattle. Computers and Electronics in Agriculture, 151, 392–402.

    Article  Google Scholar 

  42. Andriamandroso, A., Bindelle, J., Mercatoris, B. & Lebeau, F. (2016). A review on the use of sensors to monitor cattle jaw movements and behavior when grazing. Biotechnologie, Agronomie, Société et Environnement, 20.

  43. Teman, A., Rossi, D., Meinerzhagen, P., Benini, L. & Burg, A. (2016). Power, area, and performance optimization of standard cell memory arrays through controlled placement. ACM Transactions on Design Automation of Electronic Systems, 21(4). https://doi.org/10.1145/2890498

  44. Young, S., Evermann, G., Gales, M., Kershaw, D., Moore, G., Odell, J., Ollason, D., Povey, D., Valtchev, V. & Woodland, P. (2006). The HTK book version 3.4 manual. Cambridge University Engineering Department.

  45. Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing and Management, 45(4), 427–437.

    Article  Google Scholar 

  46. Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems, 174, 33–44.

    Article  Google Scholar 

  47. Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80.

    Article  Google Scholar 

  48. Mundry, R., & Fischer, J. (1998). Use of statistical programs for nonparametric tests of small samples often leads to incorrect p values: examples from animal behaviour. Animal Behaviour, 56(1), 256–259. https://doi.org/10.1006/anbe.1998.0756

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank KBS Robotic Dairy Farm staff and Campo Experimental J. Villarino Dairy Farm staff involved in the data gathering, curation and labelling. A special thanks to Julio Galli from Facultad de Ciencias Agrarias, Universidad Nacional de Rosario and Santiago Utsumi from the Department of Animal and Range Science, New Mexico State University, United States for their constant support, help and assistance during the completation of this work. This work has been granted by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Deutscher Akademischer Austauschdienst (DAAD) (ID: 57507441).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano S. Martinez-Rau.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Rau, L.S., Weißbrich, M. & Payá-Vayá, G. A 4\(\mu\)W Low-Power Audio Processor System for Real-Time Jaw Movements Recognition in Grazing Cattle. J Sign Process Syst 95, 407–424 (2023). https://doi.org/10.1007/s11265-022-01822-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-022-01822-y

Keywords

Navigation